IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i10p1331-1336.html
   My bibliography  Save this article

Categorical time series models for contingency tables

Author

Listed:
  • Zhen, X.
  • Basawa, I.V.

Abstract

Models for time-dependent contingency tables are presented. Multinomial-logit, conditional exponential family, Markov chain and multinomial-Dirichlet models are discussed for bivariate binary time series. The models are applied to two real data sets.

Suggested Citation

  • Zhen, X. & Basawa, I.V., 2009. "Categorical time series models for contingency tables," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1331-1336, May.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:10:p:1331-1336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00068-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tweedie, Richard L., 1975. "Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space," Stochastic Processes and their Applications, Elsevier, vol. 3(4), pages 385-403, October.
    2. Fokianos, Konstantinos & Kedem, Benjamin, 1998. "Prediction and Classification of Non-stationary Categorical Time Series," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 277-296, November.
    3. Ludwig Fahrmeir & Heinz Kaufmann, 1987. "Regression Models For Non‐Stationary Categorical Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(2), pages 147-160, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, X. & Basawa, I.V., 2009. "Observation-driven generalized state space models for categorical time series," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2462-2468, December.
    2. Ginger M. Davis & Katherine B. Ensor, 2007. "Multivariate Time‐Series Analysis With Categorical and Continuous Variables in an Lstr Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 867-885, November.
    3. Xu Gao & Daniel Gillen & Hernando Ombao, 2018. "Fisher information matrix of binary time series," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 287-304, December.
    4. Heikki Kauppi, 2008. "Yield-Curve Based Probit Models for Forecasting U.S. Recessions: Stability and Dynamics," Discussion Papers 31, Aboa Centre for Economics.
    5. Pruscha Helmut & Göttlein Axel, 2003. "Forecasting of Categorical Time Series Using a Regression Model," Stochastics and Quality Control, De Gruyter, vol. 18(2), pages 223-240, January.
    6. Yuichi Goto & Masanobu Taniguchi, 2020. "Discriminant analysis based on binary time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 569-595, July.
    7. Konstantinos Fokianos, 2002. "Power Divergence Family of Tests for Categorical Time Series Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 543-564, September.
    8. George Kapetanios & James Mitchell & Yongcheol Shin, 2010. "A Nonlinear Panel Model of Cross-sectional Dependence," Working Papers 673, Queen Mary University of London, School of Economics and Finance.
    9. George Kapetanios, 2002. "Measuring Conditional Persistence in Time Series," Working Papers 474, Queen Mary University of London, School of Economics and Finance.
    10. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    11. Richard T. Baillie & George Kapetanios, 2006. "Nonlinear Models with Strongly Dependent Processes and Applications to Forward Premia and Real Exchange Rates," Working Papers 570, Queen Mary University of London, School of Economics and Finance.
    12. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    13. Guilherme Pumi & Taiane Schaedler Prass & Cleiton Guollo Taufemback, 2024. "Unit-Weibull autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 204-229, March.
    14. Sun-Joo Cho & Sarah Brown-Schmidt & Woo-yeol Lee, 2018. "Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 751-771, September.
    15. Andy Snell & George Kapetanios & Yongcheol Shin, 2004. "Testing for nonlinear cointegration between stock prices and dividends," Money Macro and Finance (MMF) Research Group Conference 2003 90, Money Macro and Finance Research Group.
    16. Brajendra C. Sutradhar, 2018. "Semi-parametric Dynamic Models for Longitudinal Ordinal Categorical Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 80-109, February.
    17. George Kapetanios & Yongcheol Shin, 2006. "Unit root tests in three-regime SETAR models," Econometrics Journal, Royal Economic Society, vol. 9(2), pages 252-278, July.
    18. Taiane Schaedler Prass & Guilherme Pumi & Cleiton Guollo Taufemback & Jonas Hendler Carlos, 2025. "Positive time series regression models: theoretical and computational aspects," Computational Statistics, Springer, vol. 40(3), pages 1185-1215, March.
    19. Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014. "A nonlinear panel data model of cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
    20. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:10:p:1331-1336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.