IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i5p543-548.html
   My bibliography  Save this article

Quasi-sure p-variation of fractional Brownian motion

Author

Listed:
  • Cao, Guilan
  • He, Kai

Abstract

In this paper, we prove that for the fractional Brownian motion Bt with Hurst parameter H, the quasi-sure limit of the form is zero, where , p>1/H.

Suggested Citation

  • Cao, Guilan & He, Kai, 2007. "Quasi-sure p-variation of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 543-548, March.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:5:p:543-548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00286-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alòs, Elisa & Mazet, Olivier & Nualart, David, 2000. "Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 121-139, March.
    2. Coutin, Laure & Nualart, David & Tudor, Ciprian A., 2001. "Tanaka formula for the fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 94(2), pages 301-315, August.
    3. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bender, Christian, 2003. "An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 81-106, March.
    2. Ciprian Necula, 2008. "A Framework for Derivative Pricing in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 19, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    3. Ciprian Necula, 2008. "Pricing European and Barrier Options in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 20, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    4. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    5. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    6. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    7. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    8. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    9. De Backer, Stijn & Rocha, Luis E.C. & Ryckebusch, Jan & Schoors, Koen, 2025. "On the potential of quantum walks for modeling financial return distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    10. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    11. Loch-Olszewska, Hanna, 2019. "Properties and distribution of the dynamical functional for the fractional Gaussian noise," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 252-271.
    12. Chr. Framstad, Nils, 2011. "On free lunches in random walk markets with short-sale constraints and small transaction costs, and weak convergence to Gaussian continuous-time processes," Memorandum 20/2011, Oslo University, Department of Economics.
    13. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    14. Akihiko Inoue & Yumiharu Nakano, 2005. "Optimal long term investment model with memory," Papers math/0506621, arXiv.org, revised May 2006.
    15. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    16. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    17. Mishura, Yuliya & Shevchenko, Georgiy & Valkeila, Esko, 2013. "Random variables as pathwise integrals with respect to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2353-2369.
    18. Aleksandr Kuklin & Gennadiy Bystray & Sergey Okhotnikov & Elena Chistova, 2015. "Economic Tomography: Opportunity to Foresee and Respond to Socio-Economic Crises," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 40-53.
    19. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    20. repec:hal:wpaper:hal-03284660 is not listed on IDEAS
    21. Beran, Jan, 1999. "SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity," CoFE Discussion Papers 99/16, University of Konstanz, Center of Finance and Econometrics (CoFE).

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:5:p:543-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.