IDEAS home Printed from
   My bibliography  Save this article

A note on margin-based loss functions in classification


  • Lin, Yi


In many classification procedures, the classification function is obtained by minimizing a certain empirical risk on the training sample. The classification is then based on the sign of the classification function. In recent years, there have been a host of classification methods proposed that use different margin-based loss functions. The margin-based loss functions are often motivated as upper bounds of the misclassification loss, but this cannot explain the statistical properties of the classification procedures. We show that a large family of margin-based loss functions are Fisher consistent for classification. That is, the population minimizer of the loss function leads to the Bayes optimal rule of classification. Our result covers almost all margin-based loss functions that have been proposed in the literature. We give an inequality that links the Fisher consistency of margin-based loss functions with the consistency of methods based on these loss functions. We use this inequality to obtain the rate of convergence for the method of sieves based on a class of margin-based loss functions.

Suggested Citation

  • Lin, Yi, 2004. "A note on margin-based loss functions in classification," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 73-82, June.
  • Handle: RePEc:eee:stapro:v:68:y:2004:i:1:p:73-82

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:bla:biomet:v:72:y:2016:i:4:p:1325-1335 is not listed on IDEAS
    2. Hayashi, Kenichi, 2012. "A simple extension of boosting for asymmetric mislabeled data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 348-356.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:68:y:2004:i:1:p:73-82. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.