Risk Guarantees for End-to-End Prediction and Optimization Processes
Author
Abstract
Suggested Citation
DOI: 10.1287/mnsc.2022.4321
Download full text from publisher
References listed on IDEAS
- Lin, Yi, 2004. "A note on margin-based loss functions in classification," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 73-82, June.
- Bartlett, Peter L. & Jordan, Michael I. & McAuliffe, Jon D., 2006. "Convexity, Classification, and Risk Bounds," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 138-156, March.
- Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
- Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
- Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Schmidt, Felix G. & Pibernik, Richard, 2025. "Data-driven inventory control for large product portfolios: A practical application of prescriptive analytics," European Journal of Operational Research, Elsevier, vol. 322(1), pages 254-269.
- Cao, Tiantian & Yang, Yi & Zhu, Han & Yu, Mingyue, 2025. "The big data newsvendor problem under demand and yield uncertainties," International Journal of Production Economics, Elsevier, vol. 279(C).
- Sadana, Utsav & Chenreddy, Abhilash & Delage, Erick & Forel, Alexandre & Frejinger, Emma & Vidal, Thibaut, 2025. "A survey of contextual optimization methods for decision-making under uncertainty," European Journal of Operational Research, Elsevier, vol. 320(2), pages 271-289.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
- Bernardo K. Pagnoncelli & Domingo Ramírez & Hamed Rahimian & Arturo Cifuentes, 2023. "A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 187-204, June.
- Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
- Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
- Meng Qi & Ying Cao & Zuo-Jun (Max) Shen, 2022. "Distributionally Robust Conditional Quantile Prediction with Fixed Design," Management Science, INFORMS, vol. 68(3), pages 1639-1658, March.
- Liu, Congzheng & Letchford, Adam N. & Svetunkov, Ivan, 2022. "Newsvendor problems: An integrated method for estimation and optimisation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 590-601.
- Schmidt, Felix G. & Pibernik, Richard, 2025. "Data-driven inventory control for large product portfolios: A practical application of prescriptive analytics," European Journal of Operational Research, Elsevier, vol. 322(1), pages 254-269.
- Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
- Shuaian Wang & Xuecheng Tian, 2023. "A Deficiency of the Predict-Then-Optimize Framework: Decreased Decision Quality with Increased Data Size," Mathematics, MDPI, vol. 11(15), pages 1-9, July.
- van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
- Corredera Barbado, Alberto & Ruiz Mora, Carlos, 2022. "Prescriptive selection of machine learning hyperparameters with applications in power markets: retailer's optimal trading," DES - Working Papers. Statistics and Econometrics. WS 33693, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Jun Li & Yizhe Huang & Yan‐Fu Li & Shuming Wang, 2023. "Redundancy allocation under state‐dependent distributional uncertainty of component lifetimes," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 930-950, March.
- Cao, Tiantian & Yang, Yi & Zhu, Han & Yu, Mingyue, 2025. "The big data newsvendor problem under demand and yield uncertainties," International Journal of Production Economics, Elsevier, vol. 279(C).
- Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, 2023. "Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 158-177, January.
- Tian, Xuecheng & Wang, Shuaian & Laporte, Gilbert & Yang, Ying, 2024. "Determinism versus uncertainty: Examining the worst-case expected performance of data-driven policies," European Journal of Operational Research, Elsevier, vol. 318(1), pages 242-252.
- Yichun Hu & Nathan Kallus & Xiaojie Mao, 2022. "Fast Rates for Contextual Linear Optimization," Management Science, INFORMS, vol. 68(6), pages 4236-4245, June.
- Pirayesh Neghab, Davood & Khayyati, Siamak & Karaesmen, Fikri, 2022. "An integrated data-driven method using deep learning for a newsvendor problem with unobservable features," European Journal of Operational Research, Elsevier, vol. 302(2), pages 482-496.
- Yunxiao Deng & Suvrajeet Sen, 2022. "Predictive stochastic programming," Computational Management Science, Springer, vol. 19(1), pages 65-98, January.
- Pascal M. Notz & Richard Pibernik, 2022. "Prescriptive Analytics for Flexible Capacity Management," Management Science, INFORMS, vol. 68(3), pages 1756-1775, March.
- Rettinger, Moritz & Mandl, Christian & Minner, Stefan, 2024. "A data-driven approach for optimal operational and financial commodity hedging," European Journal of Operational Research, Elsevier, vol. 316(1), pages 341-360.
More about this item
Keywords
stochastic optimization; prediction; end-to-end;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:12:p:8680-8698. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.