IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v56y2002i4p399-404.html
   My bibliography  Save this article

A local limit theorem for random walk maxima with heavy tails

Author

Listed:
  • Asmussen, Søren
  • Kalashnikov, Vladimir
  • Konstantinides, Dimitrios
  • Klüppelberg, Claudia
  • Tsitsiashvili, Gurami

Abstract

For a random walk with negative mean and heavy-tailed increment distribution F, it is well known that under suitable subexponential assumptions, the distribution [pi] of the maximum has a tail [pi](x,[infinity]) which is asymptotically proportional to . We supplement here this by a local result showing that [pi](x,x+z] is asymptotically proportional to zF(x,[infinity]).

Suggested Citation

  • Asmussen, Søren & Kalashnikov, Vladimir & Konstantinides, Dimitrios & Klüppelberg, Claudia & Tsitsiashvili, Gurami, 2002. "A local limit theorem for random walk maxima with heavy tails," Statistics & Probability Letters, Elsevier, vol. 56(4), pages 399-404, February.
  • Handle: RePEc:eee:stapro:v:56:y:2002:i:4:p:399-404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00033-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalashnikov, Vladimir & Konstantinides, Dimitrios, 2000. "Ruin under interest force and subexponential claims: a simple treatment," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 145-149, August.
    2. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuebao & Yang, Yang & Wang, Kaiyong & Cheng, Dongya, 2007. "Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 256-266, March.
    2. repec:spr:stpapr:v:59:y:2018:i:1:d:10.1007_s00362-016-0754-y is not listed on IDEAS
    3. Gao, Qingwu & Wang, Yuebao, 2009. "Ruin probability and local ruin probability in the random multi-delayed renewal risk model," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 588-596, March.
    4. Hansen, Niels Richard & Jensen, Anders Tolver, 2005. "The extremal behaviour over regenerative cycles for Markov additive processes with heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 579-591, April.
    5. Geluk, J.L. & Frenk, J.B.G., 2011. "Renewal theory for random variables with a heavy tailed distribution and finite variance," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 77-82, January.
    6. Barbe, Ph. & McCormick, W.P. & Zhang, C., 2007. "Tail expansions for the distribution of the maximum of a random walk with negative drift and regularly varying increments," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1835-1847, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:56:y:2002:i:4:p:399-404. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.