IDEAS home Printed from
   My bibliography  Save this article

Some estimates of geometric sums


  • Bon, Jean-Louis
  • Kalashnikov, Vladimir


The paper is devoted to analysis of geometric convolutions emerging in various fields of applied probability and, in particular, in reliability. The problem of bounding the distribution of such sums has been the subject of numerous works for last 20 years. Various bounds were proposed but their accuracy was sometimes not satisfactory for applications to highly reliable systems especially in the case of relatively small values of the time argument. Using truncation arguments, we propose new two-sided inequalities improving some known bounds.

Suggested Citation

  • Bon, Jean-Louis & Kalashnikov, Vladimir, 2001. "Some estimates of geometric sums," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 89-97, November.
  • Handle: RePEc:eee:stapro:v:55:y:2001:i:1:p:89-97

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cai, Jun & Willmot, Gordon E., 2005. "Monotonicity and aging properties of random sums," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 381-392, July.
    2. Mercier, Sophie, 2007. "Discrete random bounds for general random variables and applications to reliability," European Journal of Operational Research, Elsevier, vol. 177(1), pages 378-405, February.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:55:y:2001:i:1:p:89-97. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.