IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v44y1999i3p221-228.html
   My bibliography  Save this article

Kernel estimators of the ROC curve are better than empirical

Author

Listed:
  • Lloyd, Chris J.
  • Yong, Zhou

Abstract

The receiver operating characteristic (ROC) is a curve used to summarise the performance of a binary decision rule. It can be expressed in terms of the underlying distributions functions of the diagnostic measurement that underlies the rule. Lloyd (1998) has proposed estimating the ROC curve from kernel smoothing of these distribution functions and has presented asymptotic formulas for the bias and standard deviation of the resulting curve estimator. This paper compares the asymptotic accuracy of the kernel-based estimator with the fully empirical estimator. It is shown that the empirical estimator is deficient compared to the kernel estimator and that this deficiency is unbounded as sample size increases. A simulation study using both unimodal and bimodal distributions indicates that the gains in accuracy are significant for realistic sample sizes. Kernel-based ROC estimators can now be recommended.

Suggested Citation

  • Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
  • Handle: RePEc:eee:stapro:v:44:y:1999:i:3:p:221-228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00012-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Falk, 1983. "Relative efficiency and deficiency of kernel type estimators of smooth distribution functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 37(2), pages 73-83, June.
    2. Donald Dorfman & Edward Alf, 1968. "Maximum likelihood estimation of parameters of signal detection theory—A direct solution," Psychometrika, Springer;The Psychometric Society, vol. 33(1), pages 117-124, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
    2. Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
    3. Michał Pulit, 2016. "A new method of kernel-smoothing estimation of the ROC curve," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 603-634, July.
    4. Yang, Hanfang & Zhao, Yichuan, 2012. "Smoothed empirical likelihood for ROC curves with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 254-263.
    5. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    6. Kang, Le & Tian, Lili, 2013. "Estimation of the volume under the ROC surface with three ordinal diagnostic categories," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 39-51.
    7. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    8. Yousef, Waleed A. & Kundu, Subrata & Wagner, Robert F., 2009. "Nonparametric estimation of the threshold at an operating point on the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4370-4383, October.
    9. Lloyd, Chris J., 2002. "Estimation of a convex ROC curve," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 99-111, August.
    10. Funke, Benedikt & Palmes, Christian, 2017. "A note on estimating cumulative distribution functions by the use of convolution power kernels," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 90-98.
    11. Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
    12. Arís Fanjul-Hevia & Wenceslao González-Manteiga, 2018. "A comparative study of methods for testing the equality of two or more ROC curves," Computational Statistics, Springer, vol. 33(1), pages 357-377, March.
    13. Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
    14. Alicja Jokiel-Rokita & Rafał Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.
    15. Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
    16. Douglas Mossman & Hongying Peng, 2016. "Using Dual Beta Distributions to Create “Proper†ROC Curves Based on Rating Category Data," Medical Decision Making, , vol. 36(3), pages 349-365, April.
    17. Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    2. Alevizos, Filippos & Bagkavos, Dimitrios & Ioannides, Dimitrios, 2019. "Efficient estimation of a distribution function based on censored data," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 359-364.
    3. Ariane Hanebeck & Bernhard Klar, 2021. "Smooth distribution function estimation for lifetime distributions using Szasz–Mirakyan operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1229-1247, December.
    4. Zhongkai Liu & Howard D. Bondell, 2019. "Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 141-161, April.
    5. Cheam, Amay S.M. & McNicholas, Paul D., 2016. "Modelling receiver operating characteristic curves using Gaussian mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 192-208.
    6. Ralescu, Stefan S. & Puri, Madan L., 1996. "Weak convergence of sequences of first passage processes and applications," Stochastic Processes and their Applications, Elsevier, vol. 62(2), pages 327-345, July.
    7. Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
    8. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    9. Chris J. Lloyd, 2000. "Regression Models for Convex ROC Curves," Biometrics, The International Biometric Society, vol. 56(3), pages 862-867, September.
    10. Kouros Owzar & Pranab Kumar Sen, 2003. "Copulas: concepts and novel applications," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 323-353.
    11. Laurens Beran, 2014. "Hypothesis tests to determine if all true positives have been identified on a receiver operating characteristic curve," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1332-1341, June.
    12. Falk, Michael & Reiss, Rolf-Dieter, 2003. "Efficient estimators and LAN in canonical bivariate POT models," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 190-207, January.
    13. Juana-María Vivo & Manuel Franco & Donatella Vicari, 2018. "Rethinking an ROC partial area index for evaluating the classification performance at a high specificity range," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 683-704, September.
    14. Mammitzsch Volker, 2007. "Optimal kernels," Statistics & Risk Modeling, De Gruyter, vol. 25(2/2007), pages 1-20, April.
    15. Arup Bose & Santanu Dutta, 2022. "Kernel based estimation of the distribution function for length biased data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 269-287, April.
    16. Shan Luo & Gengsheng Qin, 2017. "New non-parametric inferences for low-income proportions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 599-626, June.
    17. Cervellera, C. & Macciò, D., 2011. "A numerical method for minimum distance estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 789-800, April.
    18. Lemdani, Mohamed & Ould-Saïd, Elias, 2003. "-deficiency of the Kaplan-Meier estimator," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 145-155, June.
    19. Sean F. Reardon & Andrew D. Ho, 2015. "Practical Issues in Estimating Achievement Gaps From Coarsened Data," Journal of Educational and Behavioral Statistics, , vol. 40(2), pages 158-189, April.
    20. Jean Mary Zarate & Caroline R Ritson & David Poeppel, 2013. "The Effect of Instrumental Timbre on Interval Discrimination," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-9, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:44:y:1999:i:3:p:221-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.