IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v44y1999i3p221-228.html
   My bibliography  Save this article

Kernel estimators of the ROC curve are better than empirical

Author

Listed:
  • Lloyd, Chris J.
  • Yong, Zhou

Abstract

The receiver operating characteristic (ROC) is a curve used to summarise the performance of a binary decision rule. It can be expressed in terms of the underlying distributions functions of the diagnostic measurement that underlies the rule. Lloyd (1998) has proposed estimating the ROC curve from kernel smoothing of these distribution functions and has presented asymptotic formulas for the bias and standard deviation of the resulting curve estimator. This paper compares the asymptotic accuracy of the kernel-based estimator with the fully empirical estimator. It is shown that the empirical estimator is deficient compared to the kernel estimator and that this deficiency is unbounded as sample size increases. A simulation study using both unimodal and bimodal distributions indicates that the gains in accuracy are significant for realistic sample sizes. Kernel-based ROC estimators can now be recommended.

Suggested Citation

  • Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
  • Handle: RePEc:eee:stapro:v:44:y:1999:i:3:p:221-228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00012-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald Dorfman & Edward Alf, 1968. "Maximum likelihood estimation of parameters of signal detection theory—A direct solution," Psychometrika, Springer;The Psychometric Society, vol. 33(1), pages 117-124, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
    2. Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
    3. Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
    4. Michał Pulit, 2016. "A new method of kernel-smoothing estimation of the ROC curve," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 603-634, July.
    5. Yang, Hanfang & Zhao, Yichuan, 2012. "Smoothed empirical likelihood for ROC curves with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 254-263.
    6. repec:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0783-6 is not listed on IDEAS
    7. Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
    8. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    9. Kang, Le & Tian, Lili, 2013. "Estimation of the volume under the ROC surface with three ordinal diagnostic categories," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 39-51.
    10. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    11. Yousef, Waleed A. & Kundu, Subrata & Wagner, Robert F., 2009. "Nonparametric estimation of the threshold at an operating point on the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4370-4383, October.
    12. Lloyd, Chris J., 2002. "Estimation of a convex ROC curve," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 99-111, August.
    13. Funke, Benedikt & Palmes, Christian, 2017. "A note on estimating cumulative distribution functions by the use of convolution power kernels," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 90-98.
    14. Peter Hall & Rob J. Hyndman, 2002. "An Improved Method for Bandwidth Selection when Estimating ROC Curves," Monash Econometrics and Business Statistics Working Papers 11/02, Monash University, Department of Econometrics and Business Statistics.
    15. Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:44:y:1999:i:3:p:221-228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.