A note on estimating cumulative distribution functions by the use of convolution power kernels
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2016.10.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rong Liu & Lijian Yang, 2008. "Kernel estimation of multivariate cumulative distribution function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 661-677.
- Jones, M. C., 1990. "The performance of kernel density functions in kernel distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 129-132, February.
- Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
- Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- D. Blanke & D. Bosq, 2018. "Polygonal smoothing of the empirical distribution function," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 263-287, July.
- Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
- Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
- Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan Ortner, 2019.
"Data Driven Regulation: Theory and Application to Missing Bids,"
Boston University - Department of Economics - Working Papers Series
WP2019-04, Boston University - Department of Economics.
- Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan M. Ortner, 2019. "Data Driven Regulation: Theory and Application to Missing Bids," NBER Working Papers 25654, National Bureau of Economic Research, Inc.
- Jeffrey Racine, 2015.
"Mixed data kernel copulas,"
Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
- Jeffrey S. Racine, 2013. "Mixed Data Kernel Copulas," Working Paper series 46_13, Rimini Centre for Economic Analysis.
- Jeffrey S. Racine, 2013. "Mixed Data Kernel Copulas," Department of Economics Working Papers 2013-12, McMaster University.
- Lan Xue & Jing Wang, 2010. "Distribution function estimation by constrained polynomial spline regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 443-457.
- Hussein Khraibani & Bilal Nehme & Olivier Strauss, 2018. "Interval Estimation of Value-at-Risk Based on Nonparametric Models," Econometrics, MDPI, vol. 6(4), pages 1-30, December.
- Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
- Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
- Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.
- Minglu Ma & Qiang Wang, 2022. "Assessment and Forecast of Green Total Factor Energy Efficiency in the Yellow River Basin—A Perspective Distinguishing the Upper, Middle and Lower Stream," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
- Shingo Shirahata & In-Sun Chu, 1992. "Integrated squared error of kernel-type estimator of distribution function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(3), pages 579-591, September.
- Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
- Lina Wang & Dawei Lu, 2023. "Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.
- Lloyd, Chris J., 2002. "Estimation of a convex ROC curve," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 99-111, August.
- Ariane Hanebeck & Bernhard Klar, 2021. "Smooth distribution function estimation for lifetime distributions using Szasz–Mirakyan operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1229-1247, December.
- Langrené, Nicolas & Warin, Xavier, 2021. "Fast multivariate empirical cumulative distribution function with connection to kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
- Arís Fanjul-Hevia & Wenceslao González-Manteiga, 2018. "A comparative study of methods for testing the equality of two or more ROC curves," Computational Statistics, Springer, vol. 33(1), pages 357-377, March.
- Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
- Douglas Mossman & Hongying Peng, 2016. "Using Dual Beta Distributions to Create “Proper†ROC Curves Based on Rating Category Data," Medical Decision Making, , vol. 36(3), pages 349-365, April.
More about this item
Keywords
Distribution function estimation; Mean squared error; Boundary bias; Convolution power kernels;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:121:y:2017:i:c:p:90-98. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.