IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v22y1995i3p223-230.html
   My bibliography  Save this article

A central limit theorem for non-linear functionals of stationary Gaussian vector processes

Author

Listed:
  • Sánchez de Naranjo, M. V.

Abstract

Let Xn = (Xn1, ..., Xnd) be a stationary Gaussian vector process, such that the correlation matrix tends fast to 0. Suppose H is a d-dimensional function and define . It is shown that ZN(H) has a Gaussian limiting distribution.

Suggested Citation

  • Sánchez de Naranjo, M. V., 1995. "A central limit theorem for non-linear functionals of stationary Gaussian vector processes," Statistics & Probability Letters, Elsevier, vol. 22(3), pages 223-230, February.
  • Handle: RePEc:eee:stapro:v:22:y:1995:i:3:p:223-230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(94)00070-O
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denaranjo, M. V. S., 1993. "Non-central Limit Theorems for Non-linear Functionals of k Gaussian Fields," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 227-255, February.
    2. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    3. Ho, Hwai-Chung & Sun, Tze-Chien, 1987. "A central limit theorem for non-instantaneous filters of a stationary Gaussian process," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 144-155, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andriy Olenko & Dareen Omari, 2020. "Reduction Principle for Functionals of Vector Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 573-598, June.
    2. Zhao, Zhibiao & Wu, Wei Biao, 2007. "Asymptotic theory for curve-crossing analysis," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 862-877, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    2. Robinson, P. M., 2001. "The memory of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 101(2), pages 195-218, April.
    3. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    4. Nourdin, Ivan & Peccati, Giovanni & Podolskij, Mark, 2011. "Quantitative Breuer-Major theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 793-812, April.
    5. Debashis Mondal & Donald Percival, 2010. "Wavelet variance analysis for gappy time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 943-966, October.
    6. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    7. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
    8. Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
    9. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
    10. Alexeev, Vitali & Maynard, Alex, 2012. "Localized level crossing random walk test robust to the presence of structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3322-3344.
    11. Miguel A. Arcones, 1999. "The Law of the Iterated Logarithm over a Stationary Gaussian Sequence of Random Vectors," Journal of Theoretical Probability, Springer, vol. 12(3), pages 615-641, July.
    12. Ivan Nourdin & David Nualart, 2010. "Central Limit Theorems for Multiple Skorokhod Integrals," Journal of Theoretical Probability, Springer, vol. 23(1), pages 39-64, March.
    13. Giraitis, Liudas & Robinson, Peter M. & Surgailis, Donatas, 1999. "Variance-type estimation of long memory," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 1-24, March.
    14. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
    15. Jan Gairing & Peter Imkeller & Radomyra Shevchenko & Ciprian Tudor, 2020. "Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1691-1714, September.
    16. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Scaling transition for nonlinear random fields with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2751-2779.
    17. Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.
    18. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
    19. Anh, V. V. & Leonenko, N. N., 1999. "Non-Gaussian scenarios for the heat equation with singular initial conditions," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 91-114, November.
    20. Kim, Yoon Tae & Park, Hyun Suk, 2015. "Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 181-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:22:y:1995:i:3:p:223-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.