IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v146y2019icp97-103.html
   My bibliography  Save this article

A nested expectation–maximization algorithm for latent class models with covariates

Author

Listed:
  • Durante, Daniele
  • Canale, Antonio
  • Rigon, Tommaso

Abstract

We propose a nested em routine which guarantees monotone log-likelihood sequences and improved convergence rates in maximum likelihood estimation of latent class models with covariates.

Suggested Citation

  • Durante, Daniele & Canale, Antonio & Rigon, Tommaso, 2019. "A nested expectation–maximization algorithm for latent class models with covariates," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 97-103.
  • Handle: RePEc:eee:stapro:v:146:y:2019:i:c:p:97-103
    DOI: 10.1016/j.spl.2018.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218303390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
    2. Dankmar Böhning & Bruce Lindsay, 1988. "Monotonicity of quadratic-approximation algorithms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 641-663, December.
    3. Vermunt, Jeroen K., 2010. "Latent Class Modeling with Covariates: Two Improved Three-Step Approaches," Political Analysis, Cambridge University Press, vol. 18(4), pages 450-469.
    4. Linzer, Drew A. & Lewis, Jeffrey B., 2011. "poLCA: An R Package for Polytomous Variable Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i10).
    5. Bolck, Annabel & Croon, Marcel & Hagenaars, Jacques, 2004. "Estimating Latent Structure Models with Categorical Variables: One-Step Versus Three-Step Estimators," Political Analysis, Cambridge University Press, vol. 12(1), pages 3-27, January.
    6. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    7. Peter G. M. van der Heijden & Jos Dessens & UIf Bockenholt, 1996. "Estimating the Concomitant-Variable Latent-Class Model With the EM Algorithm," Journal of Educational and Behavioral Statistics, , vol. 21(3), pages 215-229, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurélie Bertrand & Christian Hafner, 2014. "On heterogeneous latent class models with applications to the analysis of rating scores," Computational Statistics, Springer, vol. 29(1), pages 307-330, February.
    2. Seohee Park & Seongeun Kim & Ji Hoon Ryoo, 2020. "Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    3. Jennifer Oser & Marc Hooghe & Zsuzsa Bakk & Roberto Mari, 2023. "Changing citizenship norms among adolescents, 1999-2009-2016: A two-step latent class approach with measurement equivalence testing," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4915-4933, October.
    4. Lecegui, Antonio & Olaizola, Ana María & López-i-Gelats, Feliu & Varela, Elsa, 2022. "Implementing the livelihood resilience framework: An indicator-based model for assessing mountain pastoral farming systems," Agricultural Systems, Elsevier, vol. 199(C).
    5. Aely Park & Youngmi Kim & Jennifer Murphy, 2023. "Adverse Childhood Experiences and Substance Use Among Korean College Students: Different by Gender?," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 16(4), pages 1811-1825, August.
    6. Zsuzsa Bakk & Jouni Kuha, 2018. "Two-Step Estimation of Models Between Latent Classes and External Variables," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 871-892, December.
    7. Bakk, Zsuzsa & Kuha, Jouni, 2020. "Relating latent class membership to external variables: an overview," LSE Research Online Documents on Economics 107564, London School of Economics and Political Science, LSE Library.
    8. Gugerty, Mary Kay & Mitchell, George E. & Santamarina, Francisco J., 2021. "Discourses of evaluation: Institutional logics and organizational practices among international development agencies," World Development, Elsevier, vol. 146(C).
    9. Paweł A. Atroszko & Bartosz Atroszko & Edyta Charzyńska, 2021. "Subpopulations of Addictive Behaviors in Different Sample Types and Their Relationships with Gender, Personality, and Well-Being: Latent Profile vs. Latent Class Analysis," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    10. Granado-Díaz, Rubén & Colombo, Sergio & Romero-Varo, Marina & Villanueva, Anastasio J., 2024. "Farmers' attitudes toward the use of digital technologies in the context of agri-environmental policies," Agricultural Systems, Elsevier, vol. 221(C).
    11. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    12. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    13. Konte M., 2014. "Do remittances not promote growth? : a bias-adjusted three-step mixture-of-regressions," MERIT Working Papers 2014-075, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    14. Sylvia Frühwirth-Schnatter & Gertraud Malsiner-Walli, 2019. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 33-64, March.
    15. Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
    16. F. J. Clouth & S. Pauws & F. Mols & J. K. Vermunt, 2022. "A new three-step method for using inverse propensity weighting with latent class analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 351-371, June.
    17. Angela Bruns, 2015. "Stability and Change: Income Packaging among Partners of Incarcerated Men," Working Papers wp15-04-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    18. Jun Xie & Wataru Nozawa & Shunsuke Managi, 2020. "The role of women on boards in corporate environmental strategy and financial performance: A global outlook," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2044-2059, September.
    19. Lucy Prior, 2021. "Allostatic Load and Exposure Histories of Disadvantage," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    20. Zhihua Li & Huihui Chen & Yanan Xu & Xian Zhao & Zhuoling Xiong, 2025. "Development Trajectories and Influencing Factors of Conduct Problems in Adolescents from Low-Income Families," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 18(1), pages 423-442, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:146:y:2019:i:c:p:97-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.