IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v128y2017icp14-20.html
   My bibliography  Save this article

On copula-based conditional quantile estimators

Author

Listed:
  • Rémillard, Bruno
  • Nasri, Bouchra
  • Bouezmarni, Taoufik

Abstract

Recently, two different copula-based approaches have been proposed to estimate the conditional quantile function of a variable Y with respect to a vector of covariates X: the first estimator is related to quantile regression weighted by the conditional copula density, while the second estimator is based on the inverse of the conditional distribution function written in terms of margins and the copula. Using empirical processes, we show that even if the two estimators look quite different, their estimation errors have the same limiting distribution. Also, we propose a bootstrap procedure for the limiting process in order to construct uniform confidence bands around the conditional quantile function.

Suggested Citation

  • Rémillard, Bruno & Nasri, Bouchra & Bouezmarni, Taoufik, 2017. "On copula-based conditional quantile estimators," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 14-20.
  • Handle: RePEc:eee:stapro:v:128:y:2017:i:c:p:14-20
    DOI: 10.1016/j.spl.2017.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217301530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hohsuk Noh & Anouar El Ghouch & Ingrid Van Keilegom, 2015. "Semiparametric Conditional Quantile Estimation Through Copula-Based Multivariate Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 167-178, April.
    2. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    3. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    4. Noh, Hohsuk & El Ghouch, Anouar & Bouezmarni, Taoufik, 2013. "Copula-Based Regression Estimation and Inference," LIDAM Reprints ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    6. Hohsuk Noh & Anouar El Ghouch & Taoufik Bouezmarni, 2013. "Copula-Based Regression Estimation and Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 676-688, June.
    7. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    8. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    9. V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
    10. Noh, Hohsuk & El Ghouch, Anouar & Van Keilegom, Ingrid, 2015. "Semiparametric Conditional Quantile Estimation Through Copula-Based Multivariate Models," LIDAM Reprints ISBA 2015013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nasri, Bouchra R. & Rémillard, Bruno N. & Bouezmarni, Taoufik, 2019. "Semi-parametric copula-based models under non-stationarity," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 347-365.
    2. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2020. "Copula-based regression models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    3. Jiang, Rong & Yu, Keming, 2020. "Single-index composite quantile regression for massive data," Journal of Multivariate Analysis, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    2. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    3. Tepegjozova Marija & Zhou Jing & Claeskens Gerda & Czado Claudia, 2022. "Nonparametric C- and D-vine-based quantile regression," Dependence Modeling, De Gruyter, vol. 10(1), pages 1-21, January.
    4. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2020. "Copula-based regression models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    5. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    6. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.
    7. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    8. Sifat, Imtiaz & Ghafoor, Abdul & Ah Mand, Abdollah, 2021. "The COVID-19 pandemic and speculation in energy, precious metals, and agricultural futures," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    9. Zhu, Kailun & Kurowicka, Dorota & Nane, Gabriela F., 2021. "Simplified R-vine based forward regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    10. Genest Christian & Scherer Matthias, 2019. "The world of vines: An interview with Claudia Czado," Dependence Modeling, De Gruyter, vol. 7(1), pages 169-180, January.
    11. Matthias Killiches & Claudia Czado, 2018. "A D‐vine copula‐based model for repeated measurements extending linear mixed models with homogeneous correlation structure," Biometrics, The International Biometric Society, vol. 74(3), pages 997-1005, September.
    12. Czado, Claudia & Ivanov, Eugen & Okhrin, Yarema, 2019. "Modelling temporal dependence of realized variances with vines," Econometrics and Statistics, Elsevier, vol. 12(C), pages 198-216.
    13. Maximilian Coblenz & Simon Holz & Hans‐Jörg Bauer & Oliver Grothe & Rainer Koch, 2020. "Modelling fuel injector spray characteristics in jet engines by using vine copulas," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 863-886, August.
    14. Mojirsheibani, Majid, 2021. "On classification with nonignorable missing data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    16. Nagler Thomas & Czado Claudia & Schellhase Christian, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    17. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    18. M. Mesfioui & T. Bouezmarni & M. Belalia, 2023. "Copula-based link functions in binary regression models," Statistical Papers, Springer, vol. 64(2), pages 557-585, April.
    19. Mohamad Khoirun Najib & Sri Nurdiati & Ardhasena Sopaheluwakan, 2022. "Multivariate fire risk models using copula regression in Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1263-1283, September.
    20. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2016. "Semiparametric Copula Quantile Regression for Complete or Censored Data," LIDAM Discussion Papers ISBA 2016009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:128:y:2017:i:c:p:14-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.