IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v155y2021ics0167947320301821.html
   My bibliography  Save this article

Simplified R-vine based forward regression

Author

Listed:
  • Zhu, Kailun
  • Kurowicka, Dorota
  • Nane, Gabriela F.

Abstract

An extension of the D-vine based forward regression procedure to a R-vine forward regression is proposed. In this extension any R-vine structure can be taken into account. Moreover, a new heuristic is proposed to determine which R-vine structure is the most appropriate to model the conditional distribution of the response variable given the covariates. It is shown in the simulation that the performance of the heuristic is comparable to the D-vine based approach. Furthermore, it is explained how to extend the heuristic into a situation when more than one response variable are of interest. Finally, the proposed R-vine regression is applied to perform a stress analysis on the manufacturing sector which shows its impact on the whole economy.

Suggested Citation

  • Zhu, Kailun & Kurowicka, Dorota & Nane, Gabriela F., 2021. "Simplified R-vine based forward regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:csdana:v:155:y:2021:i:c:s0167947320301821
    DOI: 10.1016/j.csda.2020.107091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301821
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo, 2010. "On the simplified pair-copula construction -- Simply useful or too simplistic?," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1296-1310, May.
    2. Elif F. Acar & Radu V. Craiu & Fang Yao, 2011. "Dependence Calibration in Conditional Copulas: A Nonparametric Approach," Biometrics, The International Biometric Society, vol. 67(2), pages 445-453, June.
    3. Noh, Hohsuk & El Ghouch, Anouar & Bouezmarni, Taoufik, 2013. "Copula-Based Regression Estimation and Inference," LIDAM Reprints ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    5. Hohsuk Noh & Anouar El Ghouch & Taoufik Bouezmarni, 2013. "Copula-Based Regression Estimation and Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 676-688, June.
    6. Gijbels, Irène & Veraverbeke, Noël & Omelka, Marel, 2011. "Conditional copulas, association measures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1919-1932, May.
    7. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    8. Brechmann, Eike C. & Hendrich, Katharina & Czado, Claudia, 2013. "Conditional copula simulation for systemic risk stress testing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 722-732.
    9. Zhu, Kailun & Kurowicka, Dorota & Nane, Gabriela F., 2020. "Common sampling orders of regular vines with application to model selection," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
    10. Cooke, R.M. & Kurowicka, D. & Wilson, K., 2015. "Sampling, conditionalizing, counting, merging, searching regular vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 4-18.
    11. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    12. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    13. Noël Veraverbeke & Marek Omelka & Irène Gijbels, 2011. "Estimation of a Conditional Copula and Association Measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(4), pages 766-780, December.
    14. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    2. Gijbels, Irène & Omelka, Marek & Pešta, Michal & Veraverbeke, Noël, 2017. "Score tests for covariate effects in conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 111-133.
    3. Tepegjozova Marija & Zhou Jing & Claeskens Gerda & Czado Claudia, 2022. "Nonparametric C- and D-vine-based quantile regression," Dependence Modeling, De Gruyter, vol. 10(1), pages 1-21, January.
    4. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    5. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    6. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    7. Grazian, Clara & Dalla Valle, Luciana & Liseo, Brunero, 2022. "Approximate Bayesian conditional copulas," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    8. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    9. Czado, Claudia & Ivanov, Eugen & Okhrin, Yarema, 2019. "Modelling temporal dependence of realized variances with vines," Econometrics and Statistics, Elsevier, vol. 12(C), pages 198-216.
    10. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2020. "Copula-based regression models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    11. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.
    12. Maximilian Coblenz & Simon Holz & Hans‐Jörg Bauer & Oliver Grothe & Rainer Koch, 2020. "Modelling fuel injector spray characteristics in jet engines by using vine copulas," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 863-886, August.
    13. Zhu, Kailun & Kurowicka, Dorota, 2022. "Regular vines with strongly chordal pattern of (conditional) independence," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    14. Gijbels Irène & Matterne Margot, 2021. "Study of partial and average conditional Kendall’s tau," Dependence Modeling, De Gruyter, vol. 9(1), pages 82-120, January.
    15. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    16. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    17. M. Mesfioui & T. Bouezmarni & M. Belalia, 2023. "Copula-based link functions in binary regression models," Statistical Papers, Springer, vol. 64(2), pages 557-585, April.
    18. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Brechmann, Eike C. & Hendrich, Katharina & Czado, Claudia, 2013. "Conditional copula simulation for systemic risk stress testing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 722-732.
    20. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:155:y:2021:i:c:s0167947320301821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.