Numerical approximation of SDEs with fractional noise and distributional drift
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2024.104533
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- De Angelis, Tiziano & Germain, Maximilien & Issoglio, Elena, 2022. "A numerical scheme for stochastic differential equations with distributional drift," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 55-90.
- Andreas Neuenkirch & Ivan Nourdin, 2007. "Exact Rate of Convergence of Some Approximation Schemes Associated to SDEs Driven by a Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 20(4), pages 871-899, December.
- David Baños & Salvador Ortiz-Latorre & Andrey Pilipenko & Frank Proske, 2022. "Strong Solutions of Stochastic Differential Equations with Generalized Drift and Multidimensional Fractional Brownian Initial Noise," Journal of Theoretical Probability, Springer, vol. 35(2), pages 714-771, June.
- Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
- Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
- Paul Gassiat, 2022. "Weak error rates of numerical schemes for rough volatility," Papers 2203.09298, arXiv.org, revised Feb 2023.
- Nualart, David & Ouknine, Youssef, 2002. "Regularization of differential equations by fractional noise," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 103-116, November.
- Catellier, R. & Gubinelli, M., 2016. "Averaging along irregular curves and regularisation of ODEs," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2323-2366.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Coffie, Emmanuel & Duedahl, Sindre & Proske, Frank, 2023. "Sensitivity analysis with respect to a stochastic stock price model with rough volatility via a Bismut–Elworthy–Li formula for singular SDEs," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 156-195.
- David Baños & Salvador Ortiz-Latorre & Andrey Pilipenko & Frank Proske, 2022. "Strong Solutions of Stochastic Differential Equations with Generalized Drift and Multidimensional Fractional Brownian Initial Noise," Journal of Theoretical Probability, Springer, vol. 35(2), pages 714-771, June.
- Iksanov, Alexander & Pilipenko, Andrey, 2023. "On a skew stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 44-68.
- Gassiat, Paul & Mądry, Łukasz, 2023. "Perturbations of singular fractional SDEs," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 137-172.
- Ofelia Bonesini & Emilio Ferrucci & Ioannis Gasteratos & Antoine Jacquier, 2024. "Rough differential equations for volatility," Papers 2412.21192, arXiv.org.
- Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.
- Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
- Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2020. "Optimal ratcheting of dividends in a Brownian risk model," Papers 2012.10632, arXiv.org.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
- Meng, Hui & Siu, Tak Kuen, 2011.
"On optimal reinsurance, dividend and reinvestment strategies,"
Economic Modelling, Elsevier, vol. 28(1-2), pages 211-218, January.
- Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1), pages 211-218.
- Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
- Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
- Harang, Fabian A. & Tindel, Samy, 2021. "Volterra equations driven by rough signals," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 34-78.
- Ewa Marciniak & Zbigniew Palmowski, 2018. "On the Optimal Dividend Problem in the Dual Model with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 533-552, November.
- Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
- Hubalek, Friedrich & Schachermayer, Walter, 2004. "Optimizing expected utility of dividend payments for a Brownian risk process and a peculiar nonlinear ODE," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 193-225, April.
- Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
- Siu Hin Tang & Mathieu Rosenbaum & Chao Zhou, 2023. "Forecasting Volatility with Machine Learning and Rough Volatility: Example from the Crypto-Winter," Papers 2311.04727, arXiv.org, revised Feb 2024.
- Jin, Zhuo & Yang, Hailiang & Yin, G., 2015. "Optimal debt ratio and dividend payment strategies with reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 351-363.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:181:y:2025:i:c:s0304414924002412. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/spapps/v181y2025ics0304414924002412.html