Volterra equations driven by rough signals
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2021.08.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Deya, Aurélien & Tindel, Samy, 2011. "Rough Volterra equations 2: Convolutional generalized integrals," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1864-1899, August.
- Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
- Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
- Cochran, W. George & Lee, Jung-Soon & Potthoff, Jürgen, 1995. "Stochastic Volterra equations with singular kernels," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 337-349, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Song, Jian & Tindel, Samy, 2022. "Skorohod and Stratonovich integrals for controlled processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 569-595.
- Qi Feng & Jianfeng Zhang, 2021. "Cubature Method for Stochastic Volterra Integral Equations," Papers 2110.12853, arXiv.org, revised Jul 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
- Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022.
"Short-dated smile under rough volatility: asymptotics and numerics,"
Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
- Peter K. Friz & Paul Gassiat & Paolo Pigato, 2020. "Short dated smile under Rough Volatility: asymptotics and numerics," Papers 2009.08814, arXiv.org, revised Sep 2021.
- Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023.
"Local volatility under rough volatility,"
Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
- Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2022. "Local volatility under rough volatility," Papers 2204.02376, arXiv.org, revised Nov 2022.
- Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Apr 2024.
- Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
- Jie, Lijuan & Luo, Liangqing & Zhang, Hua, 2024. "One-dimensional McKean–Vlasov stochastic Volterra equations with Hölder diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 205(C).
- Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
- Horvath, Blanka & Jacquier, Antoine & Muguruza, Aitor & Søjmark, Andreas, 2024. "Functional central limit theorems for rough volatility," LSE Research Online Documents on Economics 122848, London School of Economics and Political Science, LSE Library.
- Alexandre Pannier & Antoine Jacquier, 2019. "On the uniqueness of solutions of stochastic Volterra equations," Papers 1912.05917, arXiv.org, revised Apr 2020.
- Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
- Aur'elien Alfonsi & Guillaume Szulda, 2024. "On non-negative solutions of stochastic Volterra equations with jumps and non-Lipschitz coefficients," Papers 2402.19203, arXiv.org, revised Jul 2024.
- David J. Promel & David Scheffels, 2022. "Pathwise uniqueness for singular stochastic Volterra equations with H\"older coefficients," Papers 2212.08029, arXiv.org, revised Jul 2024.
- Antonis Papapantoleon & Jasper Rou, 2024. "A time-stepping deep gradient flow method for option pricing in (rough) diffusion models," Papers 2403.00746, arXiv.org.
- Prömel, David J. & Scheffels, David, 2023. "Stochastic Volterra equations with Hölder diffusion coefficients," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 291-315.
- Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.
- Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
- Liang Wang & Weixuan Xia, 2022.
"Power‐type derivatives for rough volatility with jumps,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
- Liang Wang & Weixuan Xia, 2020. "Power-type derivatives for rough volatility with jumps," Papers 2008.10184, arXiv.org, revised Nov 2021.
- Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2023.
"Short-Time Asymptotics for Non-Self-Similar Stochastic Volatility Models,"
Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(3), pages 123-152, May.
- Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2022. "Short-time asymptotics for non self-similar stochastic volatility models," Papers 2204.10103, arXiv.org, revised Nov 2023.
- Fred Espen Benth & Heidar Eyjolfsson, 2024. "Robustness of Hilbert space-valued stochastic volatility models," Finance and Stochastics, Springer, vol. 28(4), pages 1117-1146, October.
More about this item
Keywords
Rough path theory; Linear Volterra integral equations; Fractional differential equations; Signature of path;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:142:y:2021:i:c:p:34-78. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.