IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i9p5636-5694.html

Statistical inference for a partially observed interacting system of Hawkes processes

Author

Listed:
  • Liu, Chenguang

Abstract

We observe the actions of a K sub-sample of N individuals up to time t for some large K≤N. We model the relationships of individuals by i.i.d. Bernoulli(p)-random variables, where p∈(0,1] is an unknown parameter. The rate of action of each individual depends on some unknown parameter μ>0 and on the sum of some function ϕ of the ages of the actions of the individuals which influence him. The function ϕ is unknown but we assume it rapidly decays. The aim of this paper is to estimate the parameter p asymptotically as N→∞, K→∞, and t→∞. Let mt be the average number of actions per individual up to time t. In the subcritical case, where mt increases linearly, we build an estimator of p with the rate of convergence 1K+NmtK+NKmt. In the supercritical case, where mt increases exponentially fast, we build an estimator of p with the rate of convergence 1K+NmtK.

Suggested Citation

  • Liu, Chenguang, 2020. "Statistical inference for a partially observed interacting system of Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5636-5694.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:9:p:5636-5694
    DOI: 10.1016/j.spa.2020.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919301048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jakob Gulddahl Rasmussen, 2013. "Bayesian Inference for Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 623-642, September.
    2. Bacry, E. & Delattre, S. & Hoffmann, M. & Muzy, J.F., 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2475-2499.
    3. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    4. Luc Bauwens & Nikolaus Hautsch, 2009. "Modelling Financial High Frequency Data Using Point Processes," Springer Books, in: Thomas Mikosch & Jens-Peter Kreiß & Richard A. Davis & Torben Gustav Andersen (ed.), Handbook of Financial Time Series, chapter 41, pages 953-979, Springer.
    5. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Post-Print hal-01313994, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    2. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    3. Chen, Zezhun & Dassios, Angelos, 2022. "Cluster point processes and Poisson thinning INARMA," LSE Research Online Documents on Economics 113652, London School of Economics and Political Science, LSE Library.
    4. Gr'egoire Szymanski & Wei Xu, 2025. "Mean-Field Limits for Nearly Unstable Hawkes Processes," Papers 2501.11648, arXiv.org.
    5. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    6. Roueff, Francois & von Sachs, Rainer & Sansonnet, Laure, 2015. "Time-frequency analysis of locally stationary Hawkes processes," LIDAM Discussion Papers ISBA 2015011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Stindl, Tom & Chen, Feng, 2018. "Likelihood based inference for the multivariate renewal Hawkes process," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 131-145.
    8. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.
    9. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    10. Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Risks, MDPI, vol. 8(3), pages 1-20, September.
    11. Yun Chen-Shue & Yukun Li & Jiongmin Yong, 2024. "A Limit Order Book Model for High Frequency Trading with Rough Volatility," Papers 2412.16850, arXiv.org.
    12. Emmanuel Bacry & Jean-Francois Muzy, 2014. "Second order statistics characterization of Hawkes processes and non-parametric estimation," Papers 1401.0903, arXiv.org, revised Feb 2015.
    13. Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 406-424.
    14. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    15. Stindl, Tom & Bi, Zelong & Grazian, Clara, 2025. "Bayesian forecasting of Italian seismicity using the spatiotemporal RETAS model," Computational Statistics & Data Analysis, Elsevier, vol. 212(C).
    16. Ulrich Horst & Wei Xu, 2019. "Functional Limit Theorems for Marked Hawkes Point Measures ," Working Papers hal-02443841, HAL.
    17. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    18. Sarma, Utpal Jyoti Deba & Selvamuthu, Dharmaraja, 2024. "Study of discrete-time Hawkes process and its compensator," Statistics & Probability Letters, Elsevier, vol. 214(C).
    19. Omar El Euch & Mathieu Rosenbaum, 2017. "Perfect hedging in rough Heston models," Papers 1703.05049, arXiv.org.
    20. Chen, Zezhun & Dassios, Angelos & Kuan, Valerie & Lim, Jia Wei & Qu, Yan & Surya, Budhi & Zhao, Hongbiao, 2021. "A two-phase dynamic contagion model for COVID-19," LSE Research Online Documents on Economics 105064, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:9:p:5636-5694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.