IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v212y2025ics0167947325000957.html
   My bibliography  Save this article

Bayesian forecasting of Italian seismicity using the spatiotemporal RETAS model

Author

Listed:
  • Stindl, Tom
  • Bi, Zelong
  • Grazian, Clara

Abstract

Spatiotemporal Renewal Epidemic Type Aftershock Sequence models are self-exciting point processes that model the occurrence time, epicenter, and magnitude of earthquakes in a geographical region. The arrival rate of earthquakes is formulated as the superposition of a main shock renewal process and homogeneous Poisson processes for the aftershocks, motivated by empirical laws in seismology. Existing methods for model fitting rely on maximizing the log-likelihood by either direct numerical optimization or Expectation Maximization algorithms, both of which can suffer from convergence issues and lack adequate quantification of parameter estimation uncertainty. To address these limitations, a Bayesian approach is employed, with posterior inference carried out using a data augmentation strategy within a Markov chain Monte Carlo framework. The branching structure is treated as a latent variable to improve sampling efficiency, and a purpose-built Hamiltonian Monte Carlo sampler is implemented to update the parameters within the Gibbs sampler. This methodology enables parameter uncertainty to be incorporated into forecasts of seismicity. Estimation and forecasting are demonstrated on simulated catalogs and an earthquake catalog from Italy. R code implementing the methods is provided in the Supplementary Materials.

Suggested Citation

  • Stindl, Tom & Bi, Zelong & Grazian, Clara, 2025. "Bayesian forecasting of Italian seismicity using the spatiotemporal RETAS model," Computational Statistics & Data Analysis, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:csdana:v:212:y:2025:i:c:s0167947325000957
    DOI: 10.1016/j.csda.2025.108219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000957
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:212:y:2025:i:c:s0167947325000957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.