IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Random times and multiplicative systems

  • Li, Libo
  • Rutkowski, Marek
Registered author(s):

    The present research is motivated by the recent results of Jeanblanc and Song (2011) [10,11]. Our aim is to demonstrate, with the help of multiplicative systems introduced in Meyer (1979) [21], that for any given positive F-submartingale F such that F∞=1, there exists a random time τ on some extension of the filtered probability space such that the Azéma submartingale associated with τ coincides with F. Pertinent properties of this construction are studied and it is subsequently extended to the case of several correlated random times with the predetermined univariate conditional distributions.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000336
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 122 (2012)
    Issue (Month): 5 ()
    Pages: 2053-2077

    as
    in new window

    Handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2053-2077
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description

    Order Information: Postal: http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/OOC/InitController?id=505572&ref=505572_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Jeanblanc, Monique & Song, Shiqi, 2011. "An explicit model of default time with given survival probability," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1678-1704, August.
    2. R. J. Elliott & M. Jeanblanc & M. Yor, 2000. "On Models of Default Risk," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 179-195.
    3. Constantinos Kardaras, 2010. "Numéraire-invariant preferences in financial modeling," LSE Research Online Documents on Economics 44993, London School of Economics and Political Science, LSE Library.
    4. Jeanblanc, Monique & Song, Shiqi, 2011. "Random times with given survival probability and their -martingale decomposition formula," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1389-1410, June.
    5. El Karoui, Nicole & Jeanblanc, Monique & Jiao, Ying, 2010. "What happens after a default: The conditional density approach," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1011-1032, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2053-2077. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.