IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i4p1808-1839.html
   My bibliography  Save this article

Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Lévy jumps

Author

Listed:
  • Figueroa-López, José E.
  • Gong, Ruoting
  • Houdré, Christian

Abstract

We consider a stochastic volatility model with Lévy jumps for a log-return process Z=(Zt)t≥0 of the form Z=U+X, where U=(Ut)t≥0 is a classical stochastic volatility process and X=(Xt)t≥0 is an independent Lévy process with absolutely continuous Lévy measure ν. Small-time expansions, of arbitrary polynomial order, in time-t, are obtained for the tails P(Zt≥z), z>0, and for the call-option prices E(ez+Zt−1)+, z≠0, assuming smoothness conditions on the density of ν away from the origin and a small-time large deviation principle on U. Our approach allows for a unified treatment of general payoff functions of the form φ(x)1x≥z for smooth functions φ and z>0. As a consequence of our tail expansions, the polynomial expansions in t of the transition densities ft are also obtained under mild conditions.

Suggested Citation

  • Figueroa-López, José E. & Gong, Ruoting & Houdré, Christian, 2012. "Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Lévy jumps," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1808-1839.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1808-1839
    DOI: 10.1016/j.spa.2012.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000221
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
    3. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    4. H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
    5. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1808-1839. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.