IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Modeling and simulation with operator scaling

Listed author(s):
  • Cohen, Serge
  • Meerschaert, Mark M.
  • Rosinski, Jan
Registered author(s):

    Self-similar processes are useful models for natural systems that exhibit scaling. Operator scaling allows a different scale factor in each coordinate. This paper develops practical methods for modeling and simulation. A simulation method is developed for operator scaling Lévy processes, based on a series representation, along with a Gaussian approximation of the small jumps. Several examples are given to illustrate the range of practical applications. A complete characterization of symmetries in two dimensions is given, for any exponent and spectral measure, to inform the choice of these model parameters. The paper concludes with some extensions to general operator self-similar processes.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 120 (2010)
    Issue (Month): 12 (December)
    Pages: 2390-2411

    in new window

    Handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2390-2411
    Contact details of provider: Web page:

    Order Information: Postal: http://

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    2. Meerschaert, Mark M. & Xiao, Yimin, 2005. "Dimension results for sample paths of operator stable Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 55-75, January.
    3. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    4. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    5. Meerschaert, Mark M. & Alan Veeh, Jeery, 1995. "Symmetry groups in d-space," Statistics & Probability Letters, Elsevier, vol. 22(1), pages 1-6, January.
    6. Sato, Ken-iti, 1987. "Strictly operator-stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 22(2), pages 278-295, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2390-2411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.