IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v87y2023ipbs0038012123000897.html
   My bibliography  Save this article

Optimal pre-dispatch task assignment of volunteers in daily emergency response

Author

Listed:
  • Matinrad, Niki
  • Granberg, Tobias Andersson

Abstract

In emergency response volunteer programs, volunteers in the vicinity of an emergency are alerted via their mobile phones to the scene of the event to perform a specific task. Tasks are usually assigned based on predetermined rules disregarding real-world uncertainties. In this paper, we consider some of these uncertainties and propose an optimization model for the dispatch of volunteers to emergencies, where all task assignments must be done before dispatch. This means that each volunteer must be given a task before knowing whether (s)he is available. The model becomes computationally demanding for large problem instances; therefore, we develop a simple greedy heuristic for the problem and ensure that it can produce high quality solutions by comparing it to the exact model. While the model is for a general emergency, we test it for the case of volunteers responding to out-of-hospital cardiac arrest (OHCA) incidents. We compare the results of the model to the dispatch strategies used in two ongoing volunteer programs in Sweden and in the Netherlands and use simulation to validate the results. The results show that the model most often outperforms the currently used strategies; however, the computational run times, even for the heuristic, are too high to be operationally useful for large problem instances. Thus, it should be possible to improve the outcome using optimization-based task assignments strategies, but a fast solution method is needed for such strategies to be practically useable.

Suggested Citation

  • Matinrad, Niki & Granberg, Tobias Andersson, 2023. "Optimal pre-dispatch task assignment of volunteers in daily emergency response," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
  • Handle: RePEc:eee:soceps:v:87:y:2023:i:pb:s0038012123000897
    DOI: 10.1016/j.seps.2023.101589
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123000897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falasca, Mauro & Zobel, Christopher, 2012. "An optimization model for volunteer assignments in humanitarian organizations," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 250-260.
    2. Shakiba Enayati & Osman Y. Özaltın & Maria E. Mayorga & Cem Saydam, 2018. "Ambulance redeployment and dispatching under uncertainty with personnel workload limitations," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 777-788, September.
    3. Jagtenberg, C.J. & van den Berg, P.L. & van der Mei, R.D., 2017. "Benchmarking online dispatch algorithms for Emergency Medical Services," European Journal of Operational Research, Elsevier, vol. 258(2), pages 715-725.
    4. K Hoad & S Robinson & R Davies, 2010. "Automated selection of the number of replications for a discrete-event simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1632-1644, November.
    5. T Andersson & P Värbrand, 2007. "Decision support tools for ambulance dispatch and relocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 195-201, February.
    6. Matinrad, N. & Reuter-Oppermann, M., 2021. "A Review on Initiatives for the Management of Daily Medical Emergencies Prior to the Arrival of Emergency Medical Services," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 130616, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Shane G. Henderson & Pieter L. van den Berg & Caroline J. Jagtenberg & Hemeng Li, 2022. "How should volunteers be dispatched to out-of-hospital cardiac arrest cases?," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 437-439, April.
    8. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    9. Paret, Kyle E. & Mayorga, Maria E. & Lodree, Emmett J., 2021. "Assigning spontaneous volunteers to relief efforts under uncertainty in task demand and volunteer availability," Omega, Elsevier, vol. 99(C).
    10. Lassiter, Kyle & Khademi, Amin & Taaffe, Kevin M., 2015. "A robust optimization approach to volunteer management in humanitarian crises," International Journal of Production Economics, Elsevier, vol. 163(C), pages 97-111.
    11. Timothy C. Y. Chan & Derya Demirtas & Roy H. Kwon, 2016. "Optimizing the Deployment of Public Access Defibrillators," Management Science, INFORMS, vol. 62(12), pages 3617-3635, December.
    12. Laura McLay & Maria Mayorga, 2013. "A model for optimally dispatching ambulances to emergency calls with classification errors in patient priorities," IISE Transactions, Taylor & Francis Journals, vol. 45(1), pages 1-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    2. Wang, Qingyi & Reed, Ashley & Nie, Xiaofeng, 2022. "Joint initial dispatching of official responders and registered volunteers during catastrophic mass-casualty incidents," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    3. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    4. Kaur, Milan Preet & Smith, Safron & Pazour, Jennifer A. & Duque Schumacher, Ana, 2022. "Optimization of volunteer task assignments to improve volunteer retention and nonprofit organizational performance," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    5. Amir Ali Nasrollahzadeh & Amin Khademi & Maria E. Mayorga, 2018. "Real-Time Ambulance Dispatching and Relocation," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 467-480, July.
    6. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.
    7. Gabriel Zayas‐Cabán & Emmett J. Lodree & David L. Kaufman, 2020. "Optimal Control of Parallel Queues for Managing Volunteer Convergence," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2268-2288, October.
    8. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    10. Paret, Kyle E. & Mayorga, Maria E. & Lodree, Emmett J., 2021. "Assigning spontaneous volunteers to relief efforts under uncertainty in task demand and volunteer availability," Omega, Elsevier, vol. 99(C).
    11. Ibrahim Çapar & Sharif H Melouk & Burcu B Keskin, 2017. "Alternative metrics to measure EMS system performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 792-808, July.
    12. Wang, Wei & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2022. "EMS location-allocation problem under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    13. Abualkhair, Hussain & Lodree, Emmett J. & Davis, Lauren B., 2020. "Managing volunteer convergence at disaster relief centers," International Journal of Production Economics, Elsevier, vol. 220(C).
    14. Thije van Barneveld, 2016. "The Minimum Expected Penalty Relocation Problem for the Computation of Compliance Tables for Ambulance Vehicles," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 370-384, May.
    15. Yoon, Soovin & Albert, Laura A., 2020. "A dynamic ambulance routing model with multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    16. Niki Matinrad & Melanie Reuter-Oppermann, 2022. "A review on initiatives for the management of daily medical emergencies prior to the arrival of emergency medical services," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 251-302, March.
    17. Robbins, Matthew J. & Jenkins, Phillip R. & Bastian, Nathaniel D. & Lunday, Brian J., 2020. "Approximate dynamic programming for the aeromedical evacuation dispatching problem: Value function approximation utilizing multiple level aggregation," Omega, Elsevier, vol. 91(C).
    18. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    19. Hamed Kazemipoor & Mohammad Ebrahim Sadeghi & Agnieszka Szmelter-Jarosz & Mohadese Aghabozorgi, 2022. "Providing a model for the issue of multi-period ambulance location," Papers 2206.11811, arXiv.org.
    20. Degel, Dirk & Wiesche, Lara & Rachuba, Sebastian & Werners, Brigitte, 2014. "Reorganizing an existing volunteer fire station network in Germany," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 149-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:87:y:2023:i:pb:s0038012123000897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.