IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v101y2025ics0038012125001089.html

A hierarchical facility location-allocation model for sustainable municipal solid waste management in urban cities

Author

Listed:
  • Kale, Aakash
  • Upadhyay, Amit
  • Anbanandam, Ramesh

Abstract

Rapid urbanization and population growth has caused municipal solid waste management to be a major challenge for cities worldwide. Thus, local authorities must develop infrastructure to handle increasing waste and reduce pressure on existing facilities. This growth demands multiple facilities for collection, segregation, and treatment. To address this, the study presents a generalized mathematical model for the comprehensive planning of waste management facilities, incorporating a bi-objective approach to manage infrastructure undesirability and the Not-In-My-Backyard (NIMBY) issue. We showcase the model's applicability for real-life scenarios and its validity is demonstrated through a case study of Faridabad, a smart city in India. The application of the proposed model leads to 8–25 % cost savings and offers a quantitative approach for assessing and mitigating undesirability.

Suggested Citation

  • Kale, Aakash & Upadhyay, Amit & Anbanandam, Ramesh, 2025. "A hierarchical facility location-allocation model for sustainable municipal solid waste management in urban cities," Socio-Economic Planning Sciences, Elsevier, vol. 101(C).
  • Handle: RePEc:eee:soceps:v:101:y:2025:i:c:s0038012125001089
    DOI: 10.1016/j.seps.2025.102259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012125001089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2025.102259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Barros, A. I. & Dekker, R. & Scholten, V., 1998. "A two-level network for recycling sand: A case study," European Journal of Operational Research, Elsevier, vol. 110(2), pages 199-214, October.
    2. Hung-Wen Shen & Yue-Hwa Yu, 1997. "Social and Economic Factors in the Spread of the NIMBY Syndrome against Waste Disposal Sites in Taiwan," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 40(2), pages 273-282.
    3. Schilling, David A. & Revelle, Charles & Cohon, Jared & Elzinga, D. Jack, 1980. "Some models for fire protection locational decisions," European Journal of Operational Research, Elsevier, vol. 5(1), pages 1-7, July.
    4. Eiselt, H.A. & Marianov, Vladimir, 2014. "A bi-objective model for the location of landfills for municipal solid waste," European Journal of Operational Research, Elsevier, vol. 235(1), pages 187-194.
    5. Dipti Singh & Ajay Satija, 2020. "Integrated municipal solid waste management in Faridabad City, Haryana State (India)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 411-425, April.
    6. Amit Upadhyay, 2020. "Improving Intermodal Train Operations in Indian Railways," Interfaces, INFORMS, vol. 50(4), pages 213-224, July.
    7. Mariano Gallo, 2019. "An Optimisation Model to Consider the NIMBY Syndrome within the Landfill Siting Problem," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    8. E Quah & K C Tan, 1998. "The Siting Problem of Nimby Facilities: Cost – Benefit Analysis and Auction Mechanisms," Environment and Planning C, , vol. 16(3), pages 255-264, June.
    9. Radovan Šomplák & Jiří Kropáč & Jaroslav Pluskal & Martin Pavlas & Boris Urbánek & Petra Vítková, 2022. "A Multi-Commodity Mathematical Modelling Approach—Hazardous Waste Treatment Infrastructure Planning in the Czech Republic," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    10. Phuong Ho, 2023. "The Costs and Environmental Justice Concerns of NIMBY in Solid Waste Disposal," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 607-654.
    11. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    12. Richard L. Church & Kenneth L. Roberts, 1983. "Generalized Coverage Models And Public Facility Location," Papers in Regional Science, Wiley Blackwell, vol. 53(1), pages 117-135, January.
    13. Richard L. Church & Robert S. Garfinkel, 1978. "Locating an Obnoxious Facility on a Network," Transportation Science, INFORMS, vol. 12(2), pages 107-118, May.
    14. Erkut, Erhan & Karagiannidis, Avraam & Perkoulidis, George & Tjandra, Stevanus A., 2008. "A multicriteria facility location model for municipal solid waste management in North Greece," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1402-1421, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    2. Stephanie A. Snyder & Robert G. Haight, 2016. "Application of the Maximal Covering Location Problem to Habitat Reserve Site Selection," International Regional Science Review, , vol. 39(1), pages 28-47, January.
    3. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    4. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    5. Mariano Gallo, 2019. "An Optimisation Model to Consider the NIMBY Syndrome within the Landfill Siting Problem," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    6. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    8. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    9. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    10. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Bilal Farhan & Alan Murray, 2006. "Distance decay and coverage in facility location planning," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(2), pages 279-295, June.
    12. Vidovic, Milorad & Dimitrijevic, Branka & Ratkovic, Branislava & Simic, Vladimir, 2011. "A novel covering approach to positioning ELV collection points," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 1-9.
    13. Jie Xiong & Shuming Wang & Tsan Sheng Ng, 2021. "Robust Bilevel Resource Recovery Planning," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 2962-2992, September.
    14. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    15. Ting L. Lei & Richard L. Church, 2014. "Vector Assignment Ordered Median Problem," International Regional Science Review, , vol. 37(2), pages 194-224, April.
    16. Sam Ratick & Jeffrey Osleeb & Kangping Si, 2016. "The Maximal Cover Location Model with Hedging," International Regional Science Review, , vol. 39(1), pages 77-107, January.
    17. Hao Yu & Wei Deng Solvang, 2017. "A multi-objective location-allocation optimization for sustainable management of municipal solid waste," Environment Systems and Decisions, Springer, vol. 37(3), pages 289-308, September.
    18. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    19. Batta, Rajan & Lejeune, Miguel & Prasad, Srinivas, 2014. "Public facility location using dispersion, population, and equity criteria," European Journal of Operational Research, Elsevier, vol. 234(3), pages 819-829.
    20. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:101:y:2025:i:c:s0038012125001089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.