IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v88y2023icp458-475.html
   My bibliography  Save this article

Forecasting VIX with time-varying risk aversion

Author

Listed:
  • Wu, Xinyu
  • He, Qizhi
  • Xie, Haibin

Abstract

In this paper, we investigate the predictive value of time-varying risk aversion (RA) for VIX via the realized EGARCH-mixed-data sampling model incorporating RA (henceforth REGARCH-MIDAS-RA). The REGARCH-MIDAS-RA model builds on the REGARCH model, which takes into account the high-frequency information by including the realized measure of volatility. Moreover, the model provides a convenient framework to model the long-run variance, which responds to changes in RA. We obtain the risk-neutralization of the REGARCH-MIDAS-RA model and derive the model-implied VIX formula. Our empirical results show that realized measure and RA possess predictive value for VIX. The REGARCH-MIDAS-RA model yields more accurate VIX forecasts compared to a range of competing models, including the GARCH, GJR-GARCH, nonlinear GARCH, EGARCH, REGARCH and REGARCH-MIDAS. In summary, our findings highlight the importance of incorporating the realized measure as well as RA in forecasting VIX.

Suggested Citation

  • Wu, Xinyu & He, Qizhi & Xie, Haibin, 2023. "Forecasting VIX with time-varying risk aversion," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 458-475.
  • Handle: RePEc:eee:reveco:v:88:y:2023:i:c:p:458-475
    DOI: 10.1016/j.iref.2023.06.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056023002022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2023.06.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Christoffersen & Steven Heston & Kris Jacobs, 2013. "Capturing Option Anomalies with a Variance-Dependent Pricing Kernel," The Review of Financial Studies, Society for Financial Studies, vol. 26(8), pages 1963-2006.
    2. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    3. Demirer, Riza & Yuksel, Asli & Yuksel, Aydin, 2022. "Time-varying risk aversion and currency excess returns," Research in International Business and Finance, Elsevier, vol. 59(C).
    4. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    7. Dai, Zhifeng & Chang, Xiaoming, 2021. "Forecasting stock market volatility: Can the risk aversion measure exert an important role?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    8. Prokopczuk, Marcel & Wese Simen, Chardin, 2014. "The importance of the volatility risk premium for volatility forecasting," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 303-320.
    9. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    10. Wu, Xinyu & Xia, Michelle & Zhang, Huanming, 2020. "Forecasting VaR using realized EGARCH model with skewness and kurtosis," Finance Research Letters, Elsevier, vol. 32(C).
    11. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    12. Park, Beum-Jo, 2014. "Time-varying, heterogeneous risk aversion and dynamics of asset prices among boundedly rational agents," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 150-159.
    13. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    14. Toshiaki Watanabe, 2012. "Quantile Forecasts Of Financial Returns Using Realized Garch Models," The Japanese Economic Review, Japanese Economic Association, vol. 63(1), pages 68-80, March.
    15. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    16. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    17. Wang, Fangfang & Ghysels, Eric, 2015. "Econometric Analysis Of Volatility Component Models," Econometric Theory, Cambridge University Press, vol. 31(2), pages 362-393, April.
    18. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    19. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    20. Kanniainen, Juho & Lin, Binghuan & Yang, Hanxue, 2014. "Estimating and using GARCH models with VIX data for option valuation," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 200-211.
    21. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    22. Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
    23. Adam Clements & Yin Liao & Yusui Tang, 2022. "Moving beyond Volatility Index (VIX): HARnessing the term structure of implied volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 86-99, January.
    24. Liu, Qiang & Guo, Shuxin & Qiao, Gaoxiu, 2015. "VIX forecasting and variance risk premium: A new GARCH approach," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 314-322.
    25. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    26. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julien Chevallier & Bilel Sanhaji, 2023. "Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices," Stats, MDPI, vol. 6(4), pages 1-32, December.
    2. Yan, Zichun & Wu, Chaonan & Zhang, Jingjia & Wang, Zehan & Lađevac, Ivona, 2024. "Asymmetric impact of energy prices on financial cycles based on interval time series modeling," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    3. Choi, Sun-Yong & Hadad, Elroi, 2025. "The dynamic relationship among economic and monetary policy, geopolitical risk, sentiment, and risk aversion: A TVP-VAR approach," Finance Research Letters, Elsevier, vol. 72(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xinyu & Zhao, An & Liu, Li, 2023. "Forecasting VIX using two-component realized EGARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    2. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    3. Gaoxiu Qiao & Gongyue Jiang, 2023. "VIX futures pricing based on high‐frequency VIX: A hybrid approach combining SVR with parametric models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1238-1260, September.
    4. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    5. Wu, Xinyu & Xie, Haibin & Zhang, Huanming, 2022. "Time-varying risk aversion and renminbi exchange rate volatility: Evidence from CARR-MIDAS model," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    6. Gongyue Jiang & Gaoxiu Qiao & Feng Ma & Lu Wang, 2022. "Directly pricing VIX futures with observable dynamic jumps based on high‐frequency VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1518-1548, August.
    7. Gongyue Jiang & Gaoxiu Qiao & Lu Wang & Feng Ma, 2024. "Hybrid forecasting of crude oil volatility index: The cross‐market effects of stock market jumps," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2378-2398, September.
    8. Peter Reinhard Hansen & Zhuo Huang & Chen Tong & Tianyi Wang, 2024. "Realized GARCH, CBOE VIX, and the Volatility Risk Premium," Journal of Financial Econometrics, Oxford University Press, vol. 22(1), pages 187-223.
    9. Qiao, Gaoxiu & Ma, Xuekun & Jiang, Gongyue & Wang, Lu, 2024. "Crude oil volatility index forecasting: New evidence based on positive and negative jumps from Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 415-437.
    10. Zhiyuan Pan & Yudong Wang & Li Liu, 2021. "Realized bipower variation, jump components, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1933-1958, December.
    11. Qi Wang & Zerong Wang, 2021. "VIX futures and its closed‐form pricing through an affine GARCH model with realized variance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 135-156, January.
    12. Gong, Jue & Wang, Gang-Jin & Xie, Chi & Uddin, Gazi Salah, 2024. "How do market volatility and risk aversion sentiment inter-influence over time? Evidence from Chinese SSE 50 ETF options," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    13. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    14. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    15. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    16. Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
    17. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    18. Zhuo Huang & Chen Tong & Tianyi Wang, 2019. "VIX term structure and VIX futures pricing with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 72-93, January.
    19. Ishida, I. & McAleer, M.J. & Oya, K., 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 VIX," Econometric Institute Research Papers EI 2011-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Wing Hong Chan & Ranjini Jha & Madhu Kalimipalli, 2009. "The Economic Value Of Using Realized Volatility In Forecasting Future Implied Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 32(3), pages 231-259, September.

    More about this item

    Keywords

    VIX forecasting; Time-varying risk aversion; Realized EGARCH; Mixed data sampling; Realized measure;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:88:y:2023:i:c:p:458-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.