IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v89y2018icp204-215.html
   My bibliography  Save this article

Estimation of surplus biomass potential in southern and central Poland using GIS applications

Author

Listed:
  • Zyadin, Anas
  • Natarajan, Karthikeyan
  • Latva-Käyrä, Petri
  • Igliński, Bartłomiej
  • Iglińska, Anna
  • Trishkin, Maxim
  • Pelkonen, Paavo
  • Pappinen, Ari

Abstract

Poland has considerable agro-biomass potential that could pave the way toward sustainable development and achieve the country's renewable energy targets by substituting the excessive use of fossil fuels, particularly coal and lignite. To develop biomass cost supply curves, biomass recourse assessment is required and socio-economic factors and environmental constraints must be considered. Surplus biomass potential is the proportion of biomass that can be used for energy generation and economic development with minimum risk. Two provinces were selected in this study to estimate forest and agricultural biomass resources. In central Poland, Kujawsko-Pomorskie province was selected due to the high density of renewable energy installations there, while Upper Silesia in the south of the country was selected because of its large coal deposits and higher forest cover. We used GIS applications, secondary data from official sources, and data from a field survey with 210 farmers to produce land use and GIS maps for surplus forest and agricultural biomass. Surplus residues from all crops in Upper Silesia and in Kujawsko-Pomorskie were estimated at 0.60 t/ha over a 12-month period. These figures correspond to approximately 57,000 and 178,000 t/year in both provinces, respectively. These maps are a useful tool in optimizing the locations of future investments in biomass-based power plants in the study regions.

Suggested Citation

  • Zyadin, Anas & Natarajan, Karthikeyan & Latva-Käyrä, Petri & Igliński, Bartłomiej & Iglińska, Anna & Trishkin, Maxim & Pelkonen, Paavo & Pappinen, Ari, 2018. "Estimation of surplus biomass potential in southern and central Poland using GIS applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 204-215.
  • Handle: RePEc:eee:rensus:v:89:y:2018:i:c:p:204-215
    DOI: 10.1016/j.rser.2018.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118301217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natarajan, Karthikeyan & Latva-Käyrä, Petri & Zyadin, Anas & Pelkonen, Paavo, 2016. "New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 256-268.
    2. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    3. Karthikeyan Natarajan & Petri Latva-Käyrä & Anas Zyadin & Suresh Chauhan & Harminder Singh & Ari Pappinen & Paavo Pelkonen, 2015. "Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India," Challenges, MDPI, vol. 6(1), pages 1-15, May.
    4. Kluts, Ingeborg & Wicke, Birka & Leemans, Rik & Faaij, André, 2017. "Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 719-734.
    5. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland," Applied Energy, Elsevier, vol. 137(C), pages 338-351.
    6. Anas Zyadin & Karthikeyan Natarajan & Suresh Chauhan & Harminder Singh & Md. Kamrul Hassan & Ari Pappinen & Paavo Pelkonen, 2015. "Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant," Challenges, MDPI, vol. 6(1), pages 1-13, April.
    7. Iglinski, Bartlomiej & Iglinska, Anna & Kujawski, Wojciech & Buczkowski, Roman & Cichosz, Marcin, 2011. "Bioenergy in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2999-3007, August.
    8. Paska, Józef & Surma, Tomasz, 2014. "Electricity generation from renewable energy sources in Poland," Renewable Energy, Elsevier, vol. 71(C), pages 286-294.
    9. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    10. Paska, J. & Salek, M. & Surma, T., 2009. "Current status and perspectives of renewable energy sources in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 142-154, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Helis & Maria Strzelczyk & Wojciech Golimowski & Aleksandra Steinhoff-Wrześniewska & Anna Paszkiewicz-Jasińska & Małgorzata Hawrot-Paw & Adam Koniuszy & Marek Hryniewicz, 2021. "Biomass Potential of the Marginal Land of the Polish Sudetes Mountain Range," Energies, MDPI, vol. 14(21), pages 1-16, November.
    2. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    3. José Hidalgo-Crespo & César I. Alvarez-Mendoza & Manuel Soto & Jorge Luis Amaya-Rivas, 2022. "Towards a Circular Economy Development for Household Used Cooking Oil in Guayaquil: Quantification, Characterization, Modeling, and Geographical Mapping," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    4. Knápek, Jaroslav & Králík, Tomáš & Vávrová, Kamila & Weger, Jan, 2020. "Dynamic biomass potential from agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Zhang, Jixiang & Li, Jun & Dong, Changqing & Zhang, Xiaolei & Rentizelas, Athanasios & Shen, Delong, 2021. "Comprehensive assessment of sustainable potential of agricultural residues for bioenergy based on geographical information system: A case study of China," Renewable Energy, Elsevier, vol. 173(C), pages 466-478.
    6. Fernando López-Rodríguez & Justo García Sanz-Calcedo & Francisco J. Moral-García, 2019. "Spatial Analysis of Residual Biomass and Location of Future Storage Centers in the Southwest of Europe," Energies, MDPI, vol. 12(10), pages 1-16, May.
    7. Poggi, Francesca & Firmino, Ana & Amado, Miguel, 2020. "Shaping energy transition at municipal scale: A net-zero energy scenario-based approach," Land Use Policy, Elsevier, vol. 99(C).
    8. Novosel, T. & Pukšec, T. & Duić, N. & Domac, J., 2020. "Heat demand mapping and district heating assessment in data-pour areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natarajan, Karthikeyan & Latva-Käyrä, Petri & Zyadin, Anas & Pelkonen, Paavo, 2016. "New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 256-268.
    2. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Anna Härri & Jarkko Levänen & Katariina Koistinen, 2020. "Marginalized Small-Scale Farmers as Actors in Just Circular-Economy Transitions: Exploring Opportunities to Circulate Crop Residue as Raw Material in India," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    4. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.
    5. Anas Zyadin & Karthikeyan Natarajan & Suresh Chauhan & Harminder Singh & Md. Kamrul Hassan & Ari Pappinen & Paavo Pelkonen, 2015. "Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant," Challenges, MDPI, vol. 6(1), pages 1-13, April.
    6. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    7. Igliński, Bartłomiej & Iglińska, Anna & Cichosz, Marcin & Kujawski, Wojciech & Buczkowski, Roman, 2016. "Renewable energy production in the Łódzkie Voivodeship. The PEST analysis of the RES in the voivodeship and in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 737-750.
    8. Hamelin, Lorie & Borzęcka, Magdalena & Kozak, Małgorzata & Pudełko, Rafał, 2019. "A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 127-142.
    9. Lovrak, Ana & Pukšec, Tomislav & Duić, Neven, 2020. "A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste," Applied Energy, Elsevier, vol. 267(C).
    10. Karthikeyan Natarajan & Petri Latva-Käyrä & Anas Zyadin & Suresh Chauhan & Harminder Singh & Ari Pappinen & Paavo Pelkonen, 2015. "Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India," Challenges, MDPI, vol. 6(1), pages 1-15, May.
    11. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    12. Mandley, S.J. & Daioglou, V. & Junginger, H.M. & van Vuuren, D.P. & Wicke, B., 2020. "EU bioenergy development to 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    14. Lozano-García, Diego Fabián & Santibañez-Aguilar, José Ezequiel & Lozano, Francisco J. & Flores-Tlacuahuac, Antonio, 2020. "GIS-based modeling of residual biomass availability for energy and production in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Igliński, Bartłomiej & Buczkowski, Roman & Cichosz, Marcin, 2015. "Biogas production in Poland—Current state, potential and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 686-695.
    16. Chakraborty, Abhishek & Biswal, Anima & Pandey, Varun & Shadab, Syed & Kalyandeep, K. & Murthy, C.S. & Seshasai, M.V.R. & Rao, P.V.N. & Jain, Niveta & Sehgal, V.K. & Kaushik, Nirmala & Singh, Sanjay &, 2022. "Developing a spatial information system of biomass potential from crop residues over India: A decision support for planning and establishment of biofuel/biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    18. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Wojciech Dybaś, 2019. "Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management," Energies, MDPI, vol. 12(5), pages 1-16, March.
    19. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    20. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:89:y:2018:i:c:p:204-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.