IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v88y2018icp123-132.html
   My bibliography  Save this article

An integrative approach for embodied energy: Towards an LCA-based data-driven design method

Author

Listed:
  • Jusselme, Thomas
  • Rey, Emmanuel
  • Andersen, Marilyne

Abstract

The built environment is one of the major contributors of greenhouse gas (GHG) emissions. To tackle climate change, global targets have been set for this sector. Although life-cycle assessment (LCA) methods are typically used to evaluate a building project's embodied energy in its final stages of development, this evaluation would be especially valuable at early design stages, when the opportunity to modify the design is greatest. In this paper, an extensive review of methods to improve the usability of LCA at the early design stage is presented. Three major issues regarding the application of LCA arose from this analysis at this stage: its time consumption, the lack of design details, and the non-reproducibility of results. Moreover, LCA makes it possible to assess environmental performance, but does not provide design alternatives, which are crucial to introduce environmental targets into an iterative design process. To that end, existing techniques that can address the major LCA issues were identified, together with their respective limits. These include some promising tools that provide and explore design alternatives and their respective environmental performances. Among these tools are exploration methods, which have not been applied to LCA insofar as it is not possible to do so in a reasonable computational time. To bridge this gap, the paper outlines the structure of an LCA-based data-driven design method, which uses a combination of LCA, parametric analysis, data visualization, sensitivity analysis, and target cascading techniques.

Suggested Citation

  • Jusselme, Thomas & Rey, Emmanuel & Andersen, Marilyne, 2018. "An integrative approach for embodied energy: Towards an LCA-based data-driven design method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 123-132.
  • Handle: RePEc:eee:rensus:v:88:y:2018:i:c:p:123-132
    DOI: 10.1016/j.rser.2018.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118300662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geyer, Philipp & Schlüter, Arno, 2014. "Automated metamodel generation for Design Space Exploration and decision-making – A novel method supporting performance-oriented building design and retrofitting," Applied Energy, Elsevier, vol. 119(C), pages 537-556.
    2. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    3. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    4. Malmqvist, Tove & Glaumann, Mauritz & Scarpellini, Sabina & Zabalza, Ignacio & Aranda, Alfonso & Llera, Eva & Díaz, Sergio, 2011. "Life cycle assessment in buildings: The ENSLIC simplified method and guidelines," Energy, Elsevier, vol. 36(4), pages 1900-1907.
    5. Dixit, Manish K. & Fernández-Solís, Jose L. & Lavy, Sarel & Culp, Charles H., 2012. "Need for an embodied energy measurement protocol for buildings: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3730-3743.
    6. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    7. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Shu & Ju, Jingyi & Guo, Qiyue & Li, Xiaodong & Zhu, Yimin, 2023. "A temporally dynamic model for regional carbon impact assessment based on city information modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Kosa Golić & Vesna Kosorić & Siu-Kit Lau, 2020. "A Framework for Early Stages of Socially Sustainable Renovation of Multifamily Buildings with Occupants’ Participation," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    3. Ripa, M. & Di Felice, L.J. & Giampietro, M., 2021. "The energy metabolism of post-industrial economies. A framework to account for externalization across scales," Energy, Elsevier, vol. 214(C).
    4. Chiara Catalano & Mihaela Meslec & Jules Boileau & Riccardo Guarino & Isabella Aurich & Nathalie Baumann & Frédéric Chartier & Pascale Dalix & Sophie Deramond & Patrick Laube & Angela Ka Ki Lee & Pasc, 2021. "Smart Sustainable Cities of the New Millennium: Towards Design for Nature," Circular Economy and Sustainability,, Springer.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Han & Qiong Huang & Anxiao Zhang & Qi Zhang, 2018. "Simulation-Based Decision Support Tools in the Early Design Stages of a Green Building—A Review," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    2. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    3. Waqas Ahmed Mahar & Griet Verbeeck & Sigrid Reiter & Shady Attia, 2020. "Sensitivity Analysis of Passive Design Strategies for Residential Buildings in Cold Semi-Arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    4. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    5. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    6. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    7. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    8. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    9. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    10. Su, Ziyi & Li, Xiaofeng, 2022. "Extraction of key parameters and simplification of sub-system energy models using sensitivity analysis in subway stations," Energy, Elsevier, vol. 261(PA).
    11. Chen, Xia & Geyer, Philipp, 2022. "Machine assistance in energy-efficient building design: A predictive framework toward dynamic interaction with human decision-making under uncertainty," Applied Energy, Elsevier, vol. 307(C).
    12. Singh, Manav Mahan & Singaravel, Sundaravelpandian & Geyer, Philipp, 2021. "Machine learning for early stage building energy prediction: Increment and enrichment," Applied Energy, Elsevier, vol. 304(C).
    13. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Shan, Kui, 2015. "Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings," Energy, Elsevier, vol. 93(P2), pages 1595-1606.
    14. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2017. "Modeling the energy and environmental life cycle of buildings: A co-simulation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 733-742.
    15. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Serik Tokbolat & Farnush Nazipov & Jong R. Kim & Ferhat Karaca, 2019. "Evaluation of the Environmental Performance of Residential Building Envelope Components," Energies, MDPI, vol. 13(1), pages 1-10, December.
    17. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    18. Eduardo Vázquez-López & Federico Garzia & Roberta Pernetti & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Assessment Model of End-of-Life Costs and Waste Quantification in Selective Demolitions: Case Studies of Nearly Zero-Energy Buildings," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    19. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    20. Helena Nydahl & Staffan Andersson & Anders P. Åstrand & Thomas Olofsson, 2019. "Environmental Performance Measures to Assess Building Refurbishment from a Life Cycle Perspective," Energies, MDPI, vol. 12(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:88:y:2018:i:c:p:123-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.