IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v72y2017icp1033-1049.html
   My bibliography  Save this article

Greenhouse gas emissions from sugar cane ethanol: Estimate considering current different production scenarios in Minas Gerais, Brazil

Author

Listed:
  • Claros Garcia, Juan Carlos
  • Von Sperling, Eduardo

Abstract

The studies of greenhouse gas (GHG) emissions of sugarcane ethanol production show few scenarios or, in most cases, a single representative scenario of the most common practices for ethanol production. However, the combination of the diverse sugarcane agricultural and industrialization practices lead to a wide variety of production scenarios. Current studies do not show the GHG emissions balance for all these scenarios. This issue is the aim of this study, which presents a GHG emissions balance of ethanol production considering 120 different scenarios related to current sugarcane agricultural and industrial practices in Brazil, with data of Minas Gerais. In order to obtain the ethanol production scenarios, different types of cultivation, fertilization, harvesting and different sugarcane crop cycles were combined. The scenarios were classified by groups, according to their GHG emission levels. The main characteristics of each group were analyzed in order to identify the factors that influence the performance of GHG emissions. The results show GHG emission levels ranging from 2489.38kg CO2eq∙ha−1∙yr−1 to 3289.95kg CO2eq∙ha−1∙yr−1, depending on the regime of agricultural practices present in each scenario. The factors that most favor the increase of GHG emission levels are: short sugarcane crop cycle combined with fertigation with stillage. These two factors were present in production scenarios that presented the highest levels of GHG emissions in this study. The factors that most favor the decrease of GHG emissions are: long sugarcane crop cycle, fertilization without stillage on ratoon and mechanical harvesting without sugarcane burning. All these factors were present in scenarios that presented the lowest GHG emissions. On the other hand, in certain agricultural conditions, the mechanical harvesting of green cane showed to be as polluting as manual harvesting of burnt cane. The differences between the types of cultivation showed no significant influence on the final balance of GHG emissions.

Suggested Citation

  • Claros Garcia, Juan Carlos & Von Sperling, Eduardo, 2017. "Greenhouse gas emissions from sugar cane ethanol: Estimate considering current different production scenarios in Minas Gerais, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1033-1049.
  • Handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:1033-1049
    DOI: 10.1016/j.rser.2017.01.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lei & Quiceno, Raul & Price, Catherine & Malpas, Rick & Woods, Jeremy, 2014. "Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 571-582.
    2. Turdera, Mirko V., 2013. "Energy balance, forecasting of bioelectricity generation and greenhouse gas emission balance in the ethanol production at sugarcane mills in the state of Mato Grosso do Sul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 582-588.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    2. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    3. Milão, Raquel de Freitas D. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2021. "Second Law analysis of large-scale sugarcane-ethanol biorefineries with alternative distillation schemes: Bioenergy carbon capture scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    2. Huang, Jiangfeng & Khan, Muhammad Tahir & Perecin, Danilo & Coelho, Suani T. & Zhang, Muqing, 2020. "Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Silva-Martínez, Rodolfo Daniel & Sanches-Pereira, Alessandro & Ortiz, Willington & Gómez Galindo, Maria Fernanda & Coelho, Suani Teixeira, 2020. "The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities," Renewable Energy, Elsevier, vol. 156(C), pages 509-525.
    5. Magdalena Zdeb & Marta Bis & Artur Przywara, 2023. "Multi-Criteria Analysis of the Influence of Lignocellulosic Biomass Pretreatment Techniques on Methane Production," Energies, MDPI, vol. 16(1), pages 1-14, January.
    6. El Montasser, Ghassen & Gupta, Rangan & Martins, Andre Luis & Wanke, Peter, 2015. "Are there multiple bubbles in the ethanol–gasoline price ratio of Brazil?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 19-23.
    7. Brexó, Ramon Peres & Sant’Ana, Anderson S., 2017. "Impact and significance of microbial contamination during fermentation for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 423-434.
    8. Milão, Raquel de Freitas D. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2021. "Second Law analysis of large-scale sugarcane-ethanol biorefineries with alternative distillation schemes: Bioenergy carbon capture scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).
    10. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    11. Nicoleta Ungureanu & Valentin Vlăduț & Sorin-Ștefan Biriș, 2022. "Sustainable Valorization of Waste and By-Products from Sugarcane Processing," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    12. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    13. Silalertruksa, Thapat & Gheewala, Shabbir H. & Pongpat, Patcharaporn, 2015. "Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator," Applied Energy, Elsevier, vol. 160(C), pages 603-609.
    14. Pereira, L.G. & Cavalett, O. & Bonomi, A. & Zhang, Y. & Warner, E. & Chum, H.L., 2019. "Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:1033-1049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.