IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v66y2016icp10-26.html
   My bibliography  Save this article

How to develop distributed generation in China: In the context of the reformation of electric power system

Author

Listed:
  • Pingkuo, Liu
  • Zhongfu, Tan

Abstract

One purpose of the reformation of electric power system in China is to enable the power system to absorb a higher proportion of renewable energy. Currently, there are still such problems for China's renewable energy as high cost price, poor power regulating ability and insufficient consumptive space. As an important means of developing renewable energy power generation, distributed generation becomes a highlight in this reformation of electric power system. Under the background of reformation in power system, we describe the current overall market situation of distributed generation and the situation of distributed photovoltaic generation in China and further analyze the future policy environment of distributed generation. At the same time, we also analyze the system, technical and economic obstacles in the development of distributed generation. Market designs are made on various aspects like the objective principle, market types (spot market, futures market, financial market, ancillary service market and retail market) and transaction modes (bilateral contract, multilateral transaction platform and power pool). We also build institutional arrangement for smooth transition mechanism, problem-solving mechanism, independent accounting mechanism in power transition and distribution, full acquisition mechanism and Renewable Portfolio Standard. Discussions on the operation mode for the distributed generation are also shown in this paper based on the policies, regulations of the reformation and technical condition (micro-grid). Through our research, we finally put forward five policy proposals to provide support to the development of distributed generation during the reformation.

Suggested Citation

  • Pingkuo, Liu & Zhongfu, Tan, 2016. "How to develop distributed generation in China: In the context of the reformation of electric power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 10-26.
  • Handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:10-26
    DOI: 10.1016/j.rser.2016.07.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.07.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ou & Yu, Shunkun & Liu, Pingkuo, 2015. "Development mode for renewable energy power in China: Electricity pool and distributed generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 657-668.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yan & Zhang, Qi & Wang, Ge & McLellan, Benjamin & Liu, Xue Fei & Wang, Le, 2018. "A review of photovoltaic poverty alleviation projects in China: Current status, challenge and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 214-223.
    2. Yi, Yuxin & Zhang, Liming & Du, Lei & Sun, Helin, 2024. "Cross-regional integration of renewable energy and corporate carbon emissions: Evidence from China's cross-regional surplus renewable energy spot trading pilot," Energy Economics, Elsevier, vol. 135(C).
    3. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    4. Xu, Jiuping & Tian, Yalou & Wang, Fengjuan & Yang, Guocan & Zhao, Chuandang, 2024. "Resilience-economy-environment equilibrium based configuration interaction approach towards distributed energy system in energy intensive industry parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Ming, Zeng & Ping, Zhang & Shunkun, Yu & Hui, Liu, 2017. "Overall review of the overcapacity situation of China’s thermal power industry: Status quo, policy analysis and suggestions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 768-774.
    6. Hou, Jianchao & Wang, Che & Luo, Sai, 2020. "How to improve the competiveness of distributed energy resources in China with blockchain technology," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    7. Xin-gang, Zhao & Yi-min, Xie, 2019. "The economic performance of industrial and commercial rooftop photovoltaic in China," Energy, Elsevier, vol. 187(C).
    8. Wanyu Wang & Haochen Li & Xueliang Hou & Qian Zhang & Songfeng Tian, 2021. "Multi-Criteria Evaluation of Distributed Energy System Based on Order Relation-Anti-Entropy Weight Method," Energies, MDPI, vol. 14(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maheshwari, Mayank & Singh, Onkar, 2020. "Thermo-economic analysis of combined cycle configurations with intercooling and reheating," Energy, Elsevier, vol. 205(C).
    2. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    3. Fang Yan & Kaili Xu & Deshun Li & Zhikai Cui, 2017. "A novel hazard assessment method for biomass gasification stations based on extended set pair analysis," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-21, September.
    4. Fang Yan & Kaili Xu & Xiwen Yao & Yang Li, 2016. "Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-21, July.
    5. Yu, Hongwei & Duan, Jinhui & Du, Wei & Xue, Song & Sun, Jinghui, 2017. "China's energy storage industry: Develop status, existing problems and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 767-784.
    6. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    7. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    8. Xu, Fangqiu & Liu, Jicheng & Lin, Shuaishuai & Dai, Qiongjie & Li, Cunbin, 2018. "A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China," Energy, Elsevier, vol. 163(C), pages 585-603.
    9. Fang Yan & Kaili Xu, 2017. "Application of a Cloud Model-Set Pair Analysis in Hazard Assessment for Biomass Gasification Stations," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-17, January.
    10. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
    11. Ibrahim, Thamir k. & Mohammed, Mohammed Kamil & Awad, Omar I. & Rahman, M.M. & Najafi, G. & Basrawi, Firdaus & Abd Alla, Ahmed N. & Mamat, Rizalman, 2017. "The optimum performance of the combined cycle power plant: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 459-474.
    12. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu, 2016. "Renewable-to-total electricity consumption ratio: Estimating the permanent or transitory fluctuations based on flexible Fourier stationarity and unit root tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1409-1427.
    13. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Analysis and countermeasures of wind power curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1429-1436.
    14. Wang, Qiang & Kwan, Mei-Po & Fan, Jie & Zhou, Kan & Wang, Ya-Fei, 2019. "A study on the spatial distribution of the renewable energy industries in China and their driving factors," Renewable Energy, Elsevier, vol. 139(C), pages 161-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:10-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.