IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v58y2016icp1129-1142.html
   My bibliography  Save this article

Topological aspects of power quality improvement techniques: A comprehensive overview

Author

Listed:
  • Prakash Mahela, Om
  • Gafoor Shaik, Abdul

Abstract

Recently utilities are continuously seeking cost-effective and accurate power quality (PQ) improvement techniques in order to achieve customer satisfaction. This paper intends to provide a comprehensive review on the status of topological aspects of techniques used to improve the power quality in distribution network for the researchers, designers and engineers working in this area. This review helps to select a PQ improvement technique that suits a specific application in terms of technical and economical aspects. More than 300 research publications on the state of the art of PQ improvement techniques have been rigorously analyzed, classified and listed for quick reference.

Suggested Citation

  • Prakash Mahela, Om & Gafoor Shaik, Abdul, 2016. "Topological aspects of power quality improvement techniques: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1129-1142.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1129-1142
    DOI: 10.1016/j.rser.2015.12.251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115016342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rahmani, S. & Hamadi, Ab. & Al-Haddad, K. & Alolah, A.I., 2013. "A DSP-based implementation of an instantaneous current control for a three-phase shunt hybrid power filter," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 229-248.
    2. Mahela, Om Prakash & Shaik, Abdul Gafoor & Gupta, Neeraj, 2015. "A critical review of detection and classification of power quality events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 495-505.
    3. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2015. "A review of distribution static compensator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 531-546.
    4. Lahaçani, N.A. & Aouzellag, D. & Mendil, B., 2010. "Contribution to the improvement of voltage profile in electrical network with wind generator using SVC device," Renewable Energy, Elsevier, vol. 35(1), pages 243-248.
    5. Samiei Sarkhanloo, Mehdi & Sadeghi Yazdankhah, Ahmad & Kazemzadeh, Rasool, 2012. "A new control strategy for small wind farm with capabilities of supplying required reactive power and transient stability improvement," Renewable Energy, Elsevier, vol. 44(C), pages 32-39.
    6. Rahmani, Salem & Al-Haddad, Kamal & Kanaan, Hadi Youssef, 2006. "A comparative study of shunt hybrid and shunt active power filters for single-phase applications: Simulation and experimental validation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 71(4), pages 345-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.
    2. Samet, Haidar, 2016. "Evaluation of digital metering methods used in protection and reactive power compensation of micro-grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 260-279.
    3. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    4. Tümay, Mehmet & Demirdelen, Tuğçe & Bal, Selva & Kayaalp, Rahmi İlker & Doğru, Burcu & Aksoy, Mahmut, 2017. "A review of magnetically controlled shunt reactor for power quality improvement with renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 215-228.
    5. Himadry Shekhar Das & Md Nurunnabi & Mohamed Salem & Shuhui Li & Mohammad Mominur Rahman, 2022. "Utilization of Electric Vehicle Grid Integration System for Power Grid Ancillary Services," Energies, MDPI, vol. 15(22), pages 1-15, November.
    6. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    2. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    3. Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
    4. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
    5. Ouchen, Sabir & Gaubert, Jean-Paul & Steinhart, Heinrich & Betka, Achour, 2019. "Energy quality improvement of three-phase shunt active power filter under different voltage conditions based on predictive direct power control with disturbance rejection principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 506-519.
    6. Haddad, M. & Ktata, S. & Rahmani, S. & Al-Haddad, K., 2016. "Real time simulation and experimental validation of active power filter operation and control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 212-222.
    7. Misael Lopez-Ramirez & Eduardo Cabal-Yepez & Luis M. Ledesma-Carrillo & Homero Miranda-Vidales & Carlos Rodriguez-Donate & Rocio A. Lizarraga-Morales, 2018. "FPGA-Based Online PQD Detection and Classification through DWT, Mathematical Morphology and SVD," Energies, MDPI, vol. 11(4), pages 1-15, March.
    8. Tümay, Mehmet & Demirdelen, Tuğçe & Bal, Selva & Kayaalp, Rahmi İlker & Doğru, Burcu & Aksoy, Mahmut, 2017. "A review of magnetically controlled shunt reactor for power quality improvement with renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 215-228.
    9. Rahmani, S. & Hamadi, Ab. & Al-Haddad, K. & Alolah, A.I., 2013. "A DSP-based implementation of an instantaneous current control for a three-phase shunt hybrid power filter," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 229-248.
    10. Gowthamraj Rajendran & Reiko Raute & Cedric Caruana, 2025. "A Comprehensive Review of Solar PV Integration with Smart-Grids: Challenges, Standards, and Grid Codes," Energies, MDPI, vol. 18(9), pages 1-80, April.
    11. Chen, Diyi & Liu, Si & Ma, Xiaoyi, 2013. "Modeling, nonlinear dynamical analysis of a novel power system with random wind power and it's control," Energy, Elsevier, vol. 53(C), pages 139-146.
    12. Khokhar, Suhail & Mohd Zin, Abdullah Asuhaimi B. & Mokhtar, Ahmad Safawi B. & Pesaran, Mahmoud, 2015. "A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1650-1663.
    13. Michał Gwóźdź & Łukasz Ciepliński, 2021. "An Algorithm for Calculation and Extraction of the Grid Voltage Component," Energies, MDPI, vol. 14(16), pages 1-12, August.
    14. Sang-Keun Moon & Jin-O Kim & Charles Kim, 2019. "Multi-Labeled Recognition of Distribution System Conditions by a Waveform Feature Learning Model," Energies, MDPI, vol. 12(6), pages 1-14, March.
    15. Yljon Seferi & Steven M. Blair & Christian Mester & Brian G. Stewart, 2021. "A Novel Arc Detection Method for DC Railway Systems," Energies, MDPI, vol. 14(2), pages 1-21, January.
    16. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2017. "Power quality recognition in distribution system with solar energy penetration using S-transform and Fuzzy C-means clustering," Renewable Energy, Elsevier, vol. 106(C), pages 37-51.
    17. Ferhat Ucar & Jose Cordova & Omer F. Alcin & Besir Dandil & Fikret Ata & Reza Arghandeh, 2019. "Bundle Extreme Learning Machine for Power Quality Analysis in Transmission Networks," Energies, MDPI, vol. 12(8), pages 1-26, April.
    18. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Savić, Aleksandar & Đurišić, Željko, 2014. "Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants," Applied Energy, Elsevier, vol. 134(C), pages 114-124.
    20. Samet, Haidar, 2016. "Evaluation of digital metering methods used in protection and reactive power compensation of micro-grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 260-279.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1129-1142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.