IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v58y2016icp1017-1026.html
   My bibliography  Save this article

Complementary performance enhancement of PV energy system through thermoelectric generation

Author

Listed:
  • Verma, Vishal
  • Kane, Aarti
  • Singh, Bhim

Abstract

The solar insolation received on earth have different components in which power is embedded. Out of many, visible spectrum and thermal spectrum are separately used to harvest energy through solar thermal or solar photovoltaic systems respectively. Photovoltaic (PV) panels are reported to experience undesirably high temperature rise due to heat accumulation from solar radiation which is not actively converted into electricity. This undesirable heat decreases conversion efficiency of PV panels. Thermoelectric module (TEM) in coordination with PV panel is proposed to recover and convert this waste heat energy to useful electrical energy. This paper demonstrates the capability of proposed system for electrical power generation from waste heat developed in PV panel in addition to generation from PV systems. Dynamic model of photovoltaic thermoelectric hybrid (PTH) system is developed in SIMULINK/ MATLAB environment based on electrical and thermal characteristics of the material. Simulation results for maximum energy harvesting for PTH system are presented under dynamic perturbations in solar radiations. Proposed control scheme ensures maximum energy harvesting without allowing system to operate at temperature out of prescribed limits for PV or TEM. It has been observed in the simulation that PTH system effectively handles the load and source transitions, which validates the scheme.

Suggested Citation

  • Verma, Vishal & Kane, Aarti & Singh, Bhim, 2016. "Complementary performance enhancement of PV energy system through thermoelectric generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1017-1026.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1017-1026
    DOI: 10.1016/j.rser.2015.12.212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115015956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Shiho, 2013. "Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators," Applied Energy, Elsevier, vol. 102(C), pages 1458-1463.
    2. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    3. Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
    4. Wang, Y.N. & Lin, T.T. & Leong, J.C. & Hsu, Y.T. & Yeh, C.P. & Lee, P.H. & Tsai, C.H., 2013. "Numerical investigation of high-concentration photovoltaic module heat dissipation," Renewable Energy, Elsevier, vol. 50(C), pages 20-26.
    5. Houssamo, Issam & Locment, Fabrice & Sechilariu, Manuela, 2010. "Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms," Renewable Energy, Elsevier, vol. 35(10), pages 2381-2387.
    6. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    7. Sark, W.G.J.H.M. van, 2011. "Feasibility of photovoltaic - Thermoelectric hybrid modules," Applied Energy, Elsevier, vol. 88(8), pages 2785-2790, August.
    8. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    9. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    10. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guiqiang & Shittu, Samson & Diallo, Thierno M.O. & Yu, Min & Zhao, Xudong & Ji, Jie, 2018. "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, Elsevier, vol. 158(C), pages 41-58.
    2. Kanagaraj N, 2021. "Photovoltaic and Thermoelectric Generator Combined Hybrid Energy System with an Enhanced Maximum Power Point Tracking Technique for Higher Energy Conversion Efficiency," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    3. Karami Lakeh, Hossein & Kaatuzian, Hassan & Hosseini, Reza, 2019. "A parametrical study on photo-electro-thermal performance of an integrated thermoelectric-photovoltaic cell," Renewable Energy, Elsevier, vol. 138(C), pages 542-550.
    4. Ali Kareem Abdulrazzaq & Balázs Plesz & György Bognár, 2020. "A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions," Energies, MDPI, vol. 13(13), pages 1-23, June.
    5. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    6. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Essam H. Houssein & Rania M. Ghoniem, 2021. "Parameter Identification of Optimized Fractional Maximum Power Point Tracking for Thermoelectric Generation Systems Using Manta Ray Foraging Optimization," Mathematics, MDPI, vol. 9(22), pages 1-18, November.
    7. Siecker, J. & Kusakana, K. & Numbi, B.P., 2017. "A review of solar photovoltaic systems cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 192-203.
    8. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    9. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    10. Motiei, P. & Yaghoubi, M. & GoshtashbiRad, E. & Vadiee, A., 2018. "Two-dimensional unsteady state performance analysis of a hybrid photovoltaic-thermoelectric generator," Renewable Energy, Elsevier, vol. 119(C), pages 551-565.
    11. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    2. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    3. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    4. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    5. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    6. Wang, Yuan & Su, Shanhe & Liu, Tie & Su, Guozhen & Chen, Jincan, 2015. "Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system," Energy, Elsevier, vol. 90(P2), pages 1575-1583.
    7. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    8. Liang, Xingyu & Sun, Xiuxiu & Tian, Hua & Shu, Gequn & Wang, Yuesen & Wang, Xu, 2014. "Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine," Applied Energy, Elsevier, vol. 130(C), pages 190-199.
    9. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Wang, Xiangxiang, 2014. "Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine," Energy, Elsevier, vol. 77(C), pages 489-498.
    10. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Lu, Chi, 2017. "Experimental study on the influence of porous foam metal filled in the core flow region on the performance of thermoelectric generators," Applied Energy, Elsevier, vol. 207(C), pages 634-642.
    11. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    12. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    13. Zaher, M.H. & Abdelsalam, M.Y. & Cotton, J.S., 2020. "Study of the effects of axial conduction on the performance of thermoelectric generators integrated in a heat exchanger for waste heat recovery applications," Applied Energy, Elsevier, vol. 261(C).
    14. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    15. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    16. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    17. Pablo Donoso-García & Luis Henríquez-Vargas & Esteban Huerta, 2022. "Waste Heat Recovery from Air Using Porous Media and Conversion to Electricity," Energies, MDPI, vol. 15(15), pages 1-17, August.
    18. Kim, Shiho, 2013. "Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators," Applied Energy, Elsevier, vol. 102(C), pages 1458-1463.
    19. Park, K.E. & Kang, G.H. & Kim, H.I. & Yu, G.J. & Kim, J.T., 2010. "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module," Energy, Elsevier, vol. 35(6), pages 2681-2687.
    20. Chen, Wei-Hsin & Wu, Po-Hua & Lin, Yu-Li, 2018. "Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 209(C), pages 211-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1017-1026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.