IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v30y2014icp412-419.html
   My bibliography  Save this article

Power generation with biogas from municipal solid waste: Prediction of gas generation with in situ parameters

Author

Listed:
  • Aguilar-Virgen, Quetzalli
  • Taboada-González, Paul
  • Ojeda-Benítez, Sara
  • Cruz-Sotelo, Samantha

Abstract

Estimations of biogas emissions in final disposal sites have been studied by several researchers, primarily for their potential as a renewable source of energy and greenhouse gas emissions mitigation. Different models have been developed to predict the generation of biogas; the first-order model is widely used. Most of these models are based on two parameters, the methane generation rate (k) and methane generation potential (L0). These parameters cannot be generalized for biogas estimation in any site, and must be modified according to in situ characteristics. The objectives of this research are (a) modify the constants of k and L0 with in situ data, and (b) estimate the biogas generation in a sanitary landfill of a Mexican city using the modified constants. The following data were used in modifying the model constants biogas: (a) waste characterization studies, (b) biogas extraction tests, (c) observations of characteristics and sanitary landfill operation, (d) interviews with the managers of the sanitary landfill, and (e) several parameters of the Intergovernmental Panel on Climate Change (IPCC) model. Biogas estimation using the modified constants was performed in the version 2.0 Mexico Landfill Gas Model proposed by Stearns, Conrad and Schmidt Consulting Engineers, Inc. (SCS Engineers). The results show that approximately 70% of the waste generated is organic, which influences the value of the parameters used in calculating the k and L0. With in situ characteristics, values of k=0.0482yr−1 and L0=94,457m3/t were obtained. It is projected that the electric power generation could reach a maximum capacity of 2.4MW in 2019. This energy could increase the installed capacity in the Ensenada by approximately 4.36% and supply approximately 66% of the electric energy required for lighting, which amounts to savings of US$2.62 million and an environmental benefit of approximately 1.17MtCO2e from 2009 to 2025.

Suggested Citation

  • Aguilar-Virgen, Quetzalli & Taboada-González, Paul & Ojeda-Benítez, Sara & Cruz-Sotelo, Samantha, 2014. "Power generation with biogas from municipal solid waste: Prediction of gas generation with in situ parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 412-419.
  • Handle: RePEc:eee:rensus:v:30:y:2014:i:c:p:412-419
    DOI: 10.1016/j.rser.2013.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113007132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    2. Zamorano, Montserrat & Ignacio Pérez Pérez, Jorge & Aguilar Pavés, Ignacio & Ramos Ridao, Ángel, 2007. "Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 909-922, June.
    3. Melikoglu, Mehmet, 2013. "Vision 2023: Assessing the feasibility of electricity and biogas production from municipal solid waste in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 52-63.
    4. Johari, Anwar & Ahmed, Saeed Isa & Hashim, Haslenda & Alkali, Habib & Ramli, Mat, 2012. "Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2907-2912.
    5. Tsai, W.T., 2007. "Bioenergy from landfill gas (LFG) in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 331-344, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Cristina Rada & Marco Ragazzi & Paolo Stefani & Marco Schiavon & Vincenzo Torretta, 2015. "Modelling the Potential Biogas Productivity Range from a MSW Landfill for Its Sustainable Exploitation," Sustainability, MDPI, vol. 7(1), pages 1-14, January.
    2. Steve Ampofo & I. Sackey & Lawrence Daanaa & Michael M. Kusibu, 2022. "Multi-Criteria Assessment (Mca) And Selection Of A Solid Waste Disposal Site Within Wa Municipality, Upper West Region, Ghana," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(2), pages 83-91, July.
    3. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    4. Fuentes-Cortés, Luis Fabián & Flores-Tlacuahuac, Antonio, 2018. "Integration of distributed generation technologies on sustainable buildings," Applied Energy, Elsevier, vol. 224(C), pages 582-601.
    5. Ruoso, Ana Cristina & Dalla Nora, Macklini & Siluk, Julio Cezar Mairesse & Ribeiro, José Luis Duarte, 2022. "The impact of landfill operation factors on improving biogas generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Fazeli, Alireza & Bakhtvar, Farzaneh & Jahanshaloo, Leila & Che Sidik, Nor Azwadi & Bayat, Ali Esfandyari, 2016. "Malaysia׳s stand on municipal solid waste conversion to energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1007-1016.
    7. Raslavičius, Laurencas & Kučinskas, Vytautas & Jasinskas, Algirdas & Bazaras, Žilvinas, 2014. "Identifying renewable energy and building renovation solutions in the Baltic Sea region: The case of Kaliningrad Oblast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 196-203.
    8. Brigagão, George Victor & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F. & Mikulčić, Hrvoje & Duić, Neven, 2021. "A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noor, Zainura Zainon & Yusuf, Rafiu Olasunkanmi & Abba, Ahmad Halilu & Abu Hassan, Mohd Ariffin & Mohd Din, Mohd Fadhil, 2013. "An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 378-384.
    2. Fei, Fan & Wen, Zongguo & De Clercq, Djavan, 2019. "Spatio-temporal estimation of landfill gas energy potential: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 217-226.
    3. Islam, K.M. Nazmul, 2018. "Municipal solid waste to energy generation: An approach for enhancing climate co-benefits in the urban areas of Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2472-2486.
    4. Rui Zhao & Tao Huang & Michael McGuire, 2012. "From a Literature Review to an Alternative Treatment System for Landfill Gas and Leachate," Challenges, MDPI, vol. 3(2), pages 1-12, December.
    5. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    7. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    8. Rubí Medina-Mijangos & Luis Seguí-Amórtegui, 2020. "Research Trends in the Economic Analysis of Municipal Solid Waste Management Systems: A Bibliometric Analysis from 1980 to 2019," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    9. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    10. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
    11. Tsai, Wen-Tien, 2014. "Feed-in tariff promotion and innovative measures for renewable electricity: Taiwan case analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1126-1132.
    12. Naja, Ghinwa M. & Alary, René & Bajeat, Philippe & Bellenfant, Gaël & Godon, Jean-Jacques & Jaeg, Jean-Philippe & Keck, Gérard & Lattes, Armand & Leroux, Carole & Modelon, Hugues & Moletta-Denat, Mari, 2011. "Assessment of biogas potential hazards," Renewable Energy, Elsevier, vol. 36(12), pages 3445-3451.
    13. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    14. Liyan Feng & Jun Zhai & Lei Chen & Wuqiang Long & Jiangping Tian & Bin Tang, 2017. "Increasing the application of gas engines to decrease China’s GHG emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 839-861, August.
    15. Tsai, Wen-Tien & Lan, Haw-Farn & Lin, De-Tsai, 2008. "An analysis of bioethanol utilized as renewable energy in the transportation sector in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1364-1382, June.
    16. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    17. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    18. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    19. Tan, Sie Ting & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Wai Shin & Lee, Chew Tin & Yan, Jinyue, 2014. "Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia," Applied Energy, Elsevier, vol. 136(C), pages 797-804.
    20. Tsai, Wen-Tien & Lin, Che-I, 2009. "Overview analysis of bioenergy from livestock manure management in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2682-2688, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:30:y:2014:i:c:p:412-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.