IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125002849.html
   My bibliography  Save this article

Enhancing solar PV panel performance through active and passive cooling techniques: A comprehensive review

Author

Listed:
  • Bukar, Ahmed M.
  • Almerbati, A.
  • Shuja, S.Z.
  • Zubair, Syed M.

Abstract

Global energy demand has been on the rise due to the increasing population and industrialization. Due to fossil fuels’ contribution to greenhouse gas emissions, the world is undergoing a rapid transition to cleaner energy sources such as solar energy. The energy of the sun is predominantly converted into electrical energy using photovoltaics. However, elevated operating temperature is significantly affecting the PV conversion efficiency. To overcome this challenge, various PV cooling techniques have been developed, encompassing both passive methods and active methods. This work aims to compile a comprehensive review of these cooling techniques, focused on evaluating their effectiveness in PV temperature reduction and enhancement in PV efficiency. Key findings highlight the effectiveness of passive and active cooling methods in achieving an average PV temperature reduction of 15°C. Active air cooling achieved a maximum temperature reduction of 38°C in concentrated PV, while active liquid cooling achieved a maximum temperature reduction of 29°C in non-concentrated PV. Liquid immersion cooling yielded the highest electrical efficiency improvement of 16 %. The identified preference for CPV applications lies in passive heat pipe cooling, active air, and water cooling. Notably, in hot, dry climates, evaporative cooling outperforms air cooling, providing crucial insights for region-specific technology optimization. Liquid immersion emerges as the most suitable technique for hotspot reduction. This review aligns with UN SDG 7 by investigating cooling techniques to enhance solar PV panel efficiency and promote the widespread adoption of clean energy and by exploring strategies to optimize solar PV panel performance.

Suggested Citation

  • Bukar, Ahmed M. & Almerbati, A. & Shuja, S.Z. & Zubair, Syed M., 2025. "Enhancing solar PV panel performance through active and passive cooling techniques: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125002849
    DOI: 10.1016/j.rser.2025.115611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125002849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Atul, 2011. "A comprehensive study of solar power in India and World," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1767-1776, May.
    2. Han, Xinyue & Wang, Yiping & Zhu, Li, 2011. "Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids," Applied Energy, Elsevier, vol. 88(12), pages 4481-4489.
    3. Ranawade, Vishal & Nalwa, Kanwar Singh, 2023. "Multilayered PCMs-based cooling solution for photovoltaic modules: Modelling and experimental study," Renewable Energy, Elsevier, vol. 216(C).
    4. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm, 2021. "A novel and effective passive cooling strategy for photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Hamada, Alaa & Emam, Mohamed & Refaey, H.A. & Moawed, M. & Abdelrahman, M.A., 2023. "Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study," Energy, Elsevier, vol. 284(C).
    6. Singh, Preeti & Mudgal, Vijay & Khanna, Sourav & Mallick, Tapas K. & Reddy, K.S., 2020. "Experimental investigation of solar photovoltaic panel integrated with phase change material and multiple conductivity-enhancing-containers," Energy, Elsevier, vol. 205(C).
    7. Ahmed, Salman & Li, Senji & Li, Zhenpeng & Xiao, Gang & Ma, Tao, 2022. "Enhanced radiative cooling of solar cells by integration with heat pipe," Applied Energy, Elsevier, vol. 308(C).
    8. Khelifa, Abdelkrim & Kabeel, A.E. & Attia, Mohammed El Hadi & Zayed, Mohamed E. & Abdelgaied, Mohamed, 2023. "Numerical analysis of the heat transfer and fluid flow of a novel water-based hybrid photovoltaic-thermal solar collector integrated with flax fibers as natural porous materials," Renewable Energy, Elsevier, vol. 217(C).
    9. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    10. Gad, Ramadan & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Performance evaluation of direct and indirect thermal regulation of low concentrated (via compound parabolic collector) solar panel using phase change material-flat heat pipe cooling system," Energy, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Shafiq, Saifullah & Gangatharan, Sivasankar & Nadarajah, Mithulananthan & Shafiullah, G.M., 2025. "Efficiency enhancement of PV panels with passive thermal management using PCM: An exhaustive review on materials, designs and effective techniques," Applied Energy, Elsevier, vol. 382(C).
    2. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    3. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    4. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    5. Rehman, Tauseef-ur & Qaisrani, Mumtaz A. & Shafiq, M. Basit & Baba, Yousra Filali & Aslfattahi, Navid & Shahsavar, Amin & Cheema, Taqi Ahmad & Park, Cheol Woo, 2025. "Global perspectives on advancing photovoltaic system performance—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    6. Khan, Sheher Yar & Waqas, Adeel & Kumar, Mahesh & Liu, Shuli & Shen, Yongliang & Chen, Tingsen & Shoaib, Muhammad & Khan, Muhammad Omair, 2024. "Experimental, numerical, and 4E assessment of photovoltaic module using macro-encapsulation of pure and nano phase change material: A comparative analysis," Energy, Elsevier, vol. 290(C).
    7. Deka, Manash Jyoti & Kamble, Akash Dilip & Das, Dudul & Sharma, Prabhakar & Ali, Shahadath & Kalita, Paragmoni & Bora, Bhaskor Jyoti & Kalita, Pankaj, 2024. "Enhancing the performance of a photovoltaic thermal system with phase change materials: Predictive modelling and evaluation using neural networks," Renewable Energy, Elsevier, vol. 224(C).
    8. Sheikholeslami, M. & Alinia, A.M., 2025. "Energy management in a concentrated solar photovoltaic panel with a thermoelectric module and nanomaterial-filled storage tank," Energy, Elsevier, vol. 328(C).
    9. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Gangatharan, Sivasankar, 2024. "An experimental investigation on coalescing the potentiality of PCM, fins and water to achieve sturdy cooling effect on PV panels," Applied Energy, Elsevier, vol. 356(C).
    10. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    11. Chemisana, D. & Fernandez, E.F. & Riverola, A. & Moreno, A., 2018. "Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications," Renewable Energy, Elsevier, vol. 123(C), pages 263-272.
    12. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    13. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    14. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    15. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    16. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    17. Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
    18. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    19. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    20. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125002849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.