IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v214y2025ics136403212500190x.html
   My bibliography  Save this article

An experimental study for improving performance of a cylindrical OWC WEC with a heave plate

Author

Listed:
  • Sheng, Wanan

Abstract

This paper presents an experimental investigation to a solution on the conventional cylindrical oscillating water column (OWC) wave energy converter (WEC), with a heave plate being attached below of the cylindrical OWC. Such a simple solution could change the hydrodynamics of the cylindrical OWC device dramatically due to the significant increase of the added mass and damping coefficient to the structure motions, in particular, the natural period of the structural heave motion could be greatly increased while the natural period of the water body remains almost unchanged. As such, the enlarged difference between these two natural periods means a large relative motion between them over a wider bandwidth, hence the improved OWC could absorb wave energy more efficiently over a larger bandwidth of the wave frequencies (or periods). This is especially beneficial for the device extracting energy from ocean waves efficiently, since ocean waves inherently contain multiple periods. Meanwhile, such a solution could maintain the simplicity for the OWC structure, and a shallow draft OWC device could be possible while its energy conversion capacity is not comprised. In this work, an experimental investigation is conducted on the improved cylindrical OWC (floating), with the aims at proving the concept: with a heave plate attached to the OWC, its wave energy extraction capacity can be dramatically increased. In addition, the device motions can be effectively reduced, which is also very beneficial for the mooring and cable connections, as well as the accessibility to the device in seas, so for reducing the cost of wave energy production further.

Suggested Citation

  • Sheng, Wanan, 2025. "An experimental study for improving performance of a cylindrical OWC WEC with a heave plate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:rensus:v:214:y:2025:i:c:s136403212500190x
    DOI: 10.1016/j.rser.2025.115517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212500190X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Zhengzhi & Wang, Chen & Wang, Peng & Higuera, Pablo & Wang, Ruoqian, 2019. "Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study," Energy, Elsevier, vol. 187(C).
    2. Liu, Zhen & Zhang, Xiaoxia & Xu, Chuanli, 2023. "Hydrodynamic and energy-harvesting performance of a BBDB-OWC device in irregular waves: An experimental study," Applied Energy, Elsevier, vol. 350(C).
    3. Nicholas Ulm & Zhenhua Huang & Patrick Cross, 2023. "Experimental Study of a Fixed OWC-Type Wave Energy Converter with a Heave Plate and V-Shaped Channels for Intermediate-Water-Depth Applications," Energies, MDPI, vol. 16(16), pages 1-30, August.
    4. Yang, Shaohui & Zhu, Wenzheng & Tu, Yongqiang & Cao, Gengning & Chen, Xiaokun & Du, Zhichang & Fan, Jianyu & Huang, Yan, 2024. "Study on the influence of heave plate on energy capture performance of central pipe oscillating water column wave energy converter," Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanan Sheng & George Aggidis, 2025. "An Experimental Study of a Conventional Cylindrical Oscillating Water Column Wave Energy Converter: Fixed and Floating Devices," Energies, MDPI, vol. 18(3), pages 1-28, January.
    2. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    3. Zhu, Guixun & Samuel, John & Zheng, Siming & Hughes, Jason & Simmonds, David & Greaves, Deborah, 2023. "Numerical investigation on the hydrodynamic performance of a 2D U-shaped Oscillating Water Column wave energy converter," Energy, Elsevier, vol. 274(C).
    4. Yang, Shaohui & Zhu, Wenzheng & Tu, Yongqiang & Cao, Gengning & Chen, Xiaokun & Du, Zhichang & Fan, Jianyu & Huang, Yan, 2024. "Study on the influence of heave plate on energy capture performance of central pipe oscillating water column wave energy converter," Energy, Elsevier, vol. 312(C).
    5. Pan, Jiapeng & Lin, Yuan & Weng, Junkang & Zheng, Siming & Wei, Maoxing & He, Fang, 2025. "An in-depth experimental investigation of power take-off damping effect on an offshore dual-chamber oscillating water column converter," Energy, Elsevier, vol. 322(C).
    6. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
    7. Wang, Chen & Zhang, Yongliang, 2021. "Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study," Energy, Elsevier, vol. 222(C).
    8. Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
    9. Liu, Zhen & Zhang, Xiaoxia & Ding, Lei & Han, Ziqian & Ni, Heqiang, 2024. "Hydrodynamic and energy-harvesting performances of a compact-array OWC device: An experimental study," Energy, Elsevier, vol. 310(C).
    10. Xu, Haochun & Zhang, Yongliang & Wang, Chen & Yang, Huanbin, 2025. "Numerical study on aerodynamic and hydrodynamic load characteristics of a floating pneumatic wave energy converter under real sea conditions," Energy, Elsevier, vol. 314(C).
    11. Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Zhao, Ming & Ning, Dezhi, 2024. "A review of numerical methods for studying hydrodynamic performance of oscillating water column (OWC) devices," Renewable Energy, Elsevier, vol. 233(C).
    13. Martín-Alcántara, Antonio & Aranda-Hidalgo, José Luis & Jiménez-Solano, Alberto & Sarsa-Rubio, Antonio J., 2023. "Analysis and design of an inverted oscillating water column for energy storage under choked flow conditions," Energy, Elsevier, vol. 285(C).
    14. Wang, Chen & Zhang, Yongliang & Xu, Haochun & Chen, Wenchuang, 2024. "Wave power extraction from an integrated system composed of a three-unit oscillating water column array and an inclined breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    15. Carlo, Lilia & Iuppa, Claudio & Faraci, Carla, 2023. "A numerical-experimental study on the hydrodynamic performance of a U-OWC wave energy converter," Renewable Energy, Elsevier, vol. 203(C), pages 89-101.
    16. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    17. Nicholas Ulm & Zhenhua Huang & Patrick Cross, 2023. "Experimental Study of a Fixed OWC-Type Wave Energy Converter with a Heave Plate and V-Shaped Channels for Intermediate-Water-Depth Applications," Energies, MDPI, vol. 16(16), pages 1-30, August.
    18. Jingwei Cao & Jinkai Liu & Xin Liu & Chongji Zeng & Hewen Hu & Yongyao Luo, 2025. "A Review of Marine Renewable Energy Utilization Technology and Its Integration with Aquaculture," Energies, MDPI, vol. 18(9), pages 1-29, May.
    19. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2021. "Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall," Energy, Elsevier, vol. 226(C).
    20. Zhao, Ming & Palmer, Heath & Dhamelia, Vatsal & Wu, Helen, 2024. "Three-dimensional numerical simulation of a cylindrical oscillating water column (OWC) device placed in a wave flume," Renewable Energy, Elsevier, vol. 231(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:214:y:2025:i:c:s136403212500190x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.