IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124010128.html
   My bibliography  Save this article

New perspective on designing climate-responsive latent energy storage systems

Author

Listed:
  • Osman, O.
  • Yehya, A.
  • Maalouf, E.

Abstract

This study addresses a critical challenge in energy-efficient building design and the urgent need to reduce energy consumption and carbon emissions by proposing a climate-responsive phase-change materials (PCM) system. By dynamically optimizing the phase transition behavior of PCMs in response to external weather conditions, the system directly supports Sustainable Development Goal (SDG) 7, particularly the target to improve energy efficiency, and aligns with SDG 13 by enabling adaptive thermal management, reducing energy demand, and contributing to climate action. The optimal melting temperatures (Tm) and phase-transition temperature ranges (ΔTPCM) are selected to maximize PCM effectiveness under varying climatic conditions. Through simulations across diverse weather profiles, the study evaluates three optimization strategies: (1) achieving continuous PCM activity with minimal ΔTPCM, (2) minimizing total thermal load (QLoad), and (3) maintaining stable indoor wall temperatures. Results reveal that Hypothesis 2 most effectively reduces QLoad, offering the greatest potential for energy savings, while Hypothesis 3 prioritizes thermal comfort by ensuring temperature stability. Hypothesis 1 provides a balanced approach, sustaining consistent PCM activity with moderate temperature variations. Additionally, dynamically adjusting Tm over time while keeping ΔTPCM constant significantly enhances PCM performance, demonstrating the value of adaptive control strategies. This research not only offers systematic methodologies for PCM optimization tailored to specific climatic conditions but also introduces a novel mechanism for temporal control of phase transitions. By supporting efficient energy use and lower carbon footprints in buildings, this work provides actionable insights for advancing energy storage technologies aligned with global sustainability and emissions reduction goals.

Suggested Citation

  • Osman, O. & Yehya, A. & Maalouf, E., 2025. "New perspective on designing climate-responsive latent energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124010128
    DOI: 10.1016/j.rser.2024.115286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124010128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bre, Facundo & Lamberts, Roberto & Flores-Larsen, Silvana & Koenders, Eduardus A.B., 2023. "Multi-objective optimization of latent energy storage in buildings by using phase change materials with different melting temperatures," Applied Energy, Elsevier, vol. 336(C).
    2. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    3. de Gracia, Alvaro, 2019. "Dynamic building envelope with PCM for cooling purposes – Proof of concept," Applied Energy, Elsevier, vol. 235(C), pages 1245-1253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
    2. Lizana, Jesus & de-Borja-Torrejon, Manuel & Barrios-Padura, Angela & Auer, Thomas & Chacartegui, Ricardo, 2019. "Passive cooling through phase change materials in buildings. A critical study of implementation alternatives," Applied Energy, Elsevier, vol. 254(C).
    3. Ju, Hengjin & Li, Xiangli & Chang, Chang & Zhou, Wenqian & Wang, Gang & Tong, Cang, 2024. "Heating performance of PCM radiant floor coupled with horizontal ground source heat pump for single-family house in cold zones," Renewable Energy, Elsevier, vol. 235(C).
    4. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Lei Li & Yude Wu & Yi Lu & Xiao Yang & Qiyang Wang & Xiaoai Wang & Yulin Wang, 2022. "Numerical Simulation on the Structural Design of a Multi-Pore Water Diffuser during the External Ice Melting Process of an Ice Storage System," Energies, MDPI, vol. 15(6), pages 1-17, March.
    6. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    7. Jinghua Yu & Hongyun Yang & Junwei Tao & Jingang Zhao & Yongqiang Luo, 2023. "Performance Evaluation and Optimum Design of Ventilation Roofs with Different Positions of Shape-Stabilized PCM," Sustainability, MDPI, vol. 15(11), pages 1-33, May.
    8. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    9. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    10. Zuo, Peixian & Liu, Zhong & Zhang, Hua & Dai, Dasong & Fu, Ziyan & Corker, Jorge & Fan, Mizi, 2023. "Formulation and phase change mechanism of Capric acid/Octadecanol binary composite phase change materials," Energy, Elsevier, vol. 270(C).
    11. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    12. Xu, Bin & Xie, Xing & Pei, Gang & Chen, Xing-ni, 2020. "New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room," Applied Energy, Elsevier, vol. 266(C).
    13. Nie, Binjian & Zou, Boyang & She, Xiaohui & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2020. "Development of a heat transfer coefficient based design method of a thermal energy storage device for transport air-conditioning applications," Energy, Elsevier, vol. 196(C).
    14. Ahmad, Abrar & Memon, Shazim Ali & Dang, Hongtao & Sari, Ahmet & Gencel, Osman, 2025. "Breaking new ground: A first-of-its-kind critical analysis of review articles on phase change materials for building applications," Applied Energy, Elsevier, vol. 392(C).
    15. Vítor Leal & Raul Teixeira, 2020. "PoDIT: Portable Device for Indoor Temperature Stabilization: Concept and Theoretical Performance Assessment," Energies, MDPI, vol. 13(22), pages 1-15, November.
    16. Quddus Tushar & Guomin Zhang & Satheeskumar Navaratnam & Muhammed A. Bhuiyan & Lei Hou & Filippo Giustozzi, 2023. "A Review of Evaluative Measures of Carbon-Neutral Buildings: The Bibliometric and Science Mapping Analysis towards Sustainability," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    17. Guo, Jiwei & Dong, Jiankai & Wang, Hongjue & Wang, Yuan & Zou, Bin & Jiang, Yiqiang, 2022. "Study on the demand response potential of an actively ventilated building: Parametric and scenario analysis," Energy, Elsevier, vol. 238(PC).
    18. Ahmadi, Mohsen & Piadeh, Farzad & Hosseini, M. Reza & Zuo, Jian & Kocaturk, Tuba, 2024. "Unraveling building sector carbon mechanisms: Critique and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    19. Yu, Jinghua & Qian, Congcong & Yang, Qingchen & Xu, Tao & Zhao, Jingang & Xu, Xinhua, 2023. "The energy saving potential of a new ventilation roof with stabilized phase change material in hot summer region," Renewable Energy, Elsevier, vol. 212(C), pages 111-127.
    20. Rashidi, Saman & Esfahani, Javad Abolfazli & Karimi, Nader, 2018. "Porous materials in building energy technologies—A review of the applications, modelling and experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 229-247.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124010128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.