IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223003377.html
   My bibliography  Save this article

Formulation and phase change mechanism of Capric acid/Octadecanol binary composite phase change materials

Author

Listed:
  • Zuo, Peixian
  • Liu, Zhong
  • Zhang, Hua
  • Dai, Dasong
  • Fu, Ziyan
  • Corker, Jorge
  • Fan, Mizi

Abstract

Fatty acids and fatty alcohols have the advantages of high latent heat of phase change, good thermal stability, no corrosion, no supercooling and phase separation. They can be used as phase change energy storage materials for passive temperature control. However, their popularization and application are limited because of their high phase transition temperature and narrow phase transition range. This study develops a novel binary composite phase change materials (PCMs) of Capric acid (CA) and Octadecanol (OD) by a melt blending method. The theoretical calculation and hot melt-step cooling were carried out to generate an optimal molar ratio, followed by DSC thermal characterization. ATR-FTIR and XRD were performed to determine the phase transformation and chemical and structure changes. The results showed the binary CA-OD binary composite PCMs has a high latent heat of fusion, a melting temperature Tm = 26.48 °C and △H = 181.06 J/g at optimal mass ratio of 85.15:14.86 (CA:OD), which is higher than the theoretically predicted latent heat of phase transition, indicating a good synergistic effect beneficial to energy storage. Solid CA exists in the form of dimer and –OH in solid OD exists in form of association, and intermolecular hydrogen bonds weakens in liquid. There are hydrogen bonds in the CA-OD binary composite PCMs, and the molecular structure changes before and after the phase transformation were similar to that of a single component CA or OD. The crystal structures of the two compounds also change and the latent heat of phase transformation is improved. Finally, through TG and high and low temperature cycle test, CA-OD binary PCMs demonstrates good thermal stability and practicability in the field of building energy conservation.

Suggested Citation

  • Zuo, Peixian & Liu, Zhong & Zhang, Hua & Dai, Dasong & Fu, Ziyan & Corker, Jorge & Fan, Mizi, 2023. "Formulation and phase change mechanism of Capric acid/Octadecanol binary composite phase change materials," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003377
    DOI: 10.1016/j.energy.2023.126943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Wang, Chuyao, 2023. "Effects of the PCM layer position on the comprehensive performance of a built-middle PV-Trombe wall system for building application in the heating season," Energy, Elsevier, vol. 267(C).
    4. Duquesne, M. & Mailhé, C. & Ruiz-Onofre, K. & Achchaq, F., 2019. "Biosourced organic materials for latent heat storage: An economic and eco-friendly alternative," Energy, Elsevier, vol. 188(C).
    5. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    6. El-Raheim, D. Abd & Mohamed, A. & Abou-Ziyan, H. & Fatouh, M., 2023. "The essential properties governing the appropriate selection of phase change materials integrated into heavy structure buildings," Energy, Elsevier, vol. 266(C).
    7. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
    8. Tian, Yuanyuan & Liu, Anbang & Wang, Junli & Zhou, Yajie & Bao, Chengpeng & Xie, Huaqing & Wu, Zihua & Wang, Yuanyuan, 2021. "Optimized output electricity of thermoelectric generators by matching phase change material and thermoelectric material for intermittent heat sources," Energy, Elsevier, vol. 233(C).
    9. Cárdenas-Ramírez, Carolina & Gómez, Maryory A. & Jaramillo, Franklin & Cardona, Andrés F. & Fernández, Angel G. & Cabeza, Luisa F., 2022. "Experimental steady-state and transient thermal performance of materials for thermal energy storage in building applications: From powder SS-PCMs to SS-PCM-based acrylic plaster," Energy, Elsevier, vol. 250(C).
    10. Feng, Guohui & Huang, Kailiang & Xie, Hailun & Li, Huixing & Liu, Xin & Liu, Shibo & Cao, Chihong, 2016. "DSC test error of phase change material (PCM) and its influence on the simulation of the PCM floor," Renewable Energy, Elsevier, vol. 87(P3), pages 1148-1153.
    11. Song, Shaokun & Zhao, Tingting & Qiu, Feng & Zhu, Wanting & Chen, Taorui & Guo, Yi & Zhang, Yang & Wang, Yuqi & Feng, Rui & Liu, Yang & Xiong, Chuanxi & Zhou, Jian & Dong, Lijie, 2019. "Natural microtubule encapsulated phase change material with high thermal energy storage capacity," Energy, Elsevier, vol. 172(C), pages 1144-1150.
    12. Liu, Changyu & Sun, Yongxiang & Li, Dong & Bian, Ji & Wu, Yangyang & Li, Pengfei & Sun, Yong, 2022. "Influence of enclosure filled with phase change material on photo-thermal regulation of direct absorption anaerobic reactor: Numerical and experimental study," Applied Energy, Elsevier, vol. 313(C).
    13. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cáceres, G. & Segal, R. & Pitié, F., 2014. "Latent heat storage with tubular-encapsulated phase change materials (PCMs)," Energy, Elsevier, vol. 76(C), pages 66-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Chenglong & Xu, Lijie & Ji, Jie & Liao, Mengyin & Sun, Dan, 2017. "Experimental study of a modified solar phase change material storage wall system," Energy, Elsevier, vol. 128(C), pages 224-231.
    2. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Lei Li & Yude Wu & Yi Lu & Xiao Yang & Qiyang Wang & Xiaoai Wang & Yulin Wang, 2022. "Numerical Simulation on the Structural Design of a Multi-Pore Water Diffuser during the External Ice Melting Process of an Ice Storage System," Energies, MDPI, vol. 15(6), pages 1-17, March.
    4. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    5. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    6. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    7. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    8. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    9. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    10. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    11. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    12. Xu, Tianhao & Humire, Emma Nyholm & Trevisan, Silvia & Ignatowicz, Monika & Sawalha, Samer & Chiu, Justin NW., 2022. "Experimental and numerical investigation of a latent heat thermal energy storage unit with ellipsoidal macro-encapsulation," Energy, Elsevier, vol. 238(PB).
    13. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    14. Yan, Tian & Zhou, Xuan & Xu, Xinhua & Yu, Jinghua & Li, Xianting, 2022. "Parametric analysis on performances of the pipe-encapsulated PCM (PenPCM) wall system coupled with gravity heat-pipe and nocturnal radiant cooler," Renewable Energy, Elsevier, vol. 196(C), pages 161-180.
    15. Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).
    16. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    17. Xiong, Teng & Shah, Kwok Wei & Kua, Harn Wei, 2021. "Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 335-357.
    18. Miroslava Kavgic & Yaser Abdellatef, 2021. "Temperature Control to Improve Performance of Hempcrete-Phase Change Material Wall Assemblies in a Cold Climate," Energies, MDPI, vol. 14(17), pages 1-23, August.
    19. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Zhang, Huili & Benoit, Hadrien & Gauthier, Daniel & Degrève, Jan & Baeyens, Jan & López, Inmaculada Pérez & Hemati, Mehrdji & Flamant, Gilles, 2016. "Particle circulation loops in solar energy capture and storage: Gas–solid flow and heat transfer considerations," Applied Energy, Elsevier, vol. 161(C), pages 206-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.