IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124008931.html
   My bibliography  Save this article

A review of the materials utilized in the design and fabrication of biogas digesters

Author

Listed:
  • Pal, Sukhwant
  • Bello, Ayomikun
  • Muratova, Elvira
  • Chekanov, Alexander

Abstract

This work aims to discuss the different materials used in the construction and fabrication of biogas digesters, which are critical for sustainable energy generation. The study analyzes a broad spectrum of materials, including civil construction materials such as bricks, sand, stone, and concrete, thermoplastics like polyvinyl chloride, polyethylene, and high-density polyethylene, composite materials, and metallic substrates such as steel. These materials play a vital role in the structural integrity and functionality of biogas digesters, fulfilling various purposes depending on their properties. The main aim of this review is to consolidate and compare the properties inherent to each material, discuss the attributes of their designs, and outline their specific applications for the development of biogas digesters. The methodology involves a qualitative analysis of existing research, highlighting the techniques of adapting various materials that could accelerate the development of biogas technologies. Furthermore, the review examines the biogas production process within digesters made from materials such as stones, cement, thermoplastics, and ferrous alloys, which are also used for gas storage. Our findings indicate that small-scale, domestic biogas digesters predominantly use cement-based materials due to their rigidity, robustness, and long service life. In contrast, material selection for large-scale or commercial biogas plants is influenced by a complex relationship between the properties of the materials and the environmental factors, considering the distinct physical, electrical, and thermal characteristics of each material. Nevertheless, plastic-based digesters emerge as a promising alternative in regions facing logistical challenges, attributed to their chemical resistance, flexibility, and recyclability.

Suggested Citation

  • Pal, Sukhwant & Bello, Ayomikun & Muratova, Elvira & Chekanov, Alexander, 2025. "A review of the materials utilized in the design and fabrication of biogas digesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124008931
    DOI: 10.1016/j.rser.2024.115167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mutungwazi, Asheal & Mukumba, Patrick & Makaka, Golden, 2018. "Biogas digester types installed in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 172-180.
    2. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    3. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    4. Jiang, Xinyuan & Sommer, Sven G. & Christensen, Knud V., 2011. "A review of the biogas industry in China," Energy Policy, Elsevier, vol. 39(10), pages 6073-6081, October.
    5. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
    6. Zhou, Kui & Chaemchuen, Somboon & Verpoort, Francis, 2017. "Alternative materials in technologies for Biogas upgrading via CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1414-1441.
    7. Patrick Mukumba & Golden Makaka & Sampson Mamphweli & Peace-maker Masukume, 2019. "Design, construction and mathematical modelling of the performance of a biogas digester for a family in the Eastern Cape province, South Africa," African Journal of Science, Technology, Innovation and Development, Taylor & Francis Journals, vol. 11(3), pages 391-398, April.
    8. Pérez, Irene & Garfí, Marianna & Cadena, Erasmo & Ferrer, Ivet, 2014. "Technical, economic and environmental assessment of household biogas digesters for rural communities," Renewable Energy, Elsevier, vol. 62(C), pages 313-318.
    9. K. A. Darling & M. Rajagopalan & M. Komarasamy & M. A. Bhatia & B. C. Hornbuckle & R. S. Mishra & K. N. Solanki, 2016. "Extreme creep resistance in a microstructurally stable nanocrystalline alloy," Nature, Nature, vol. 537(7620), pages 378-381, September.
    10. Olugasa, Temilola T. & Odesola, I.F. & Oyewola, M.O., 2014. "Energy production from biogas: A conceptual review for use in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 770-776.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    2. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    3. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    4. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    6. Ferrer-Martí, Laia & Ferrer, Ivet & Sánchez, Elena & Garfí, Marianna, 2018. "A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 74-83.
    7. Patrick Mukumba & Shylet Y. Chivanga, 2023. "An Overview of Renewable Energy Technologies in the Eastern Cape Province in South Africa and the Rural Households’ Energy Poverty Coping Strategies," Challenges, MDPI, vol. 14(1), pages 1-12, March.
    8. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    10. Bastian Winkler & Iris Lewandowski & Angelika Voss & Stefanie Lemke, 2018. "Transition towards Renewable Energy Production? Potential in Smallholder Agricultural Systems in West Bengal, India," Sustainability, MDPI, vol. 10(3), pages 1-24, March.
    11. Makamure, Francis & Mukumba, Patrick & Makaka, Golden, 2021. "An analysis of bio-digester substrate heating methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Caleb Wright & Roger Sathre & Shashi Buluswar, 2020. "The global challenge of clean cooking systems," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1219-1240, December.
    13. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    14. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    15. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    16. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2016. "Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 556-571.
    17. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    18. Jouhara, H. & Czajczyńska, D. & Ghazal, H. & Krzyżyńska, R. & Anguilano, L. & Reynolds, A.J. & Spencer, N., 2017. "Municipal waste management systems for domestic use," Energy, Elsevier, vol. 139(C), pages 485-506.
    19. Murillo-Alvarado, Pascual Eduardo & Ponce-Ortega, José María, 2022. "An optimization approach to increase the human development index through a biogas supply chain in a developing region," Renewable Energy, Elsevier, vol. 190(C), pages 347-357.
    20. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124008931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.