IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v209y2025ics1364032124008335.html
   My bibliography  Save this article

An efficient uncertainty analysis of performance of hydrogen storage systems

Author

Listed:
  • Tiwari, Saurabh
  • Kumar, Akshay
  • Tiwari, Gaurav
  • Sharma, Pratibha

Abstract

The metal hydride hydrogen storage systems are gaining popularity due to their high volumetric capacity, safety and stability. The designing of these systems is complex due to many reasons, including input uncertainties. The performances of these systems are often evaluated in deterministic framework, ignoring uncertainties. This includes over-conservative safety factors in the design process increasing time and costs involved in designs. The uncertainty analysis could be a better alternative to assess system performance under such scenarios. This study investigates– i) the effect of input uncertainties on uncertainties of multiple and implicit system outputs, i.e., reaction fraction and bed temperature, ii) application of response surface and Borgonovo’s global sensitivity analysis for efficient analysis, and iii) a comparative assessment between different uncertainty methods. The methodology is demonstrated for a space heating system. Initially, a surrogate relationship is constructed between inputs-outputs using moving least square response surface, based on known input-output data estimated using COMSOL for random input realizations. Next, the sensitive inputs were identified using Monte-Carlo simulations based Borgonovo’s analysis. Finally, the effect of uncertainties of sensitive inputs on outputs were estimated using different uncertainty methods. Harr’s and Hong’s (2n) point estimate methods were observed to be highly accurate, mathematically simpler and efficient, as compared to other methods. The uncertainties of outputs were directly dependent on uncertainties of sensitive inputs. The probabilistic safety measure, reliability index, estimated using output statistics was of significant practical utility for industries to avoid deterministic safety factors based over-conservative and costly designs of storage systems.

Suggested Citation

  • Tiwari, Saurabh & Kumar, Akshay & Tiwari, Gaurav & Sharma, Pratibha, 2025. "An efficient uncertainty analysis of performance of hydrogen storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008335
    DOI: 10.1016/j.rser.2024.115107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    2. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    3. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    4. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    5. Magni, Carlo Alberto, 2016. "Capital depreciation and the underdetermination of rate of return: A unifying perspective," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 54-79.
    6. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    7. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.
    8. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    9. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Magni, Carlo Alberto & Marchioni, Andrea, 2020. "Average rates of return, working capital, and NPV-consistency in project appraisal: A sensitivity analysis approach," International Journal of Production Economics, Elsevier, vol. 229(C).
    11. Kai Kang & Bing Qing Tan, 2025. "Multi-echelon reverse logistics network design in the context of circular economy: a Hong Kong case study," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
    12. Scholz, Roland W. & Czichos, Reiner & Parycek, Peter & Lampoltshammer, Thomas J., 2020. "Organizational vulnerability of digital threats: A first validation of an assessment method," European Journal of Operational Research, Elsevier, vol. 282(2), pages 627-643.
    13. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    16. Paleari, Livia & Movedi, Ermes & Zoli, Michele & Burato, Andrea & Cecconi, Irene & Errahouly, Jabir & Pecollo, Eleonora & Sorvillo, Carla & Confalonieri, Roberto, 2021. "Sensitivity analysis using Morris: Just screening or an effective ranking method?," Ecological Modelling, Elsevier, vol. 455(C).
    17. Lian, Zheng & Zhou, Zhi-Jie & Hu, Chang-Hua & Wang, Jie & Zhang, Chun-Chao & Zhang, Chao-Li, 2024. "A health assessment method with attribute importance modeling for complex systems using belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    18. Marchioni, Andrea & Magni, Carlo Alberto, 2018. "Investment decisions and sensitivity analysis: NPV-consistency of rates of return," European Journal of Operational Research, Elsevier, vol. 268(1), pages 361-372.
    19. Schosser, Josef, 2019. "Consistency between principal and agent with differing time horizons: Computing incentives under risk," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1113-1123.
    20. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.