IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v209y2025ics1364032124008335.html
   My bibliography  Save this article

An efficient uncertainty analysis of performance of hydrogen storage systems

Author

Listed:
  • Tiwari, Saurabh
  • Kumar, Akshay
  • Tiwari, Gaurav
  • Sharma, Pratibha

Abstract

The metal hydride hydrogen storage systems are gaining popularity due to their high volumetric capacity, safety and stability. The designing of these systems is complex due to many reasons, including input uncertainties. The performances of these systems are often evaluated in deterministic framework, ignoring uncertainties. This includes over-conservative safety factors in the design process increasing time and costs involved in designs. The uncertainty analysis could be a better alternative to assess system performance under such scenarios. This study investigates– i) the effect of input uncertainties on uncertainties of multiple and implicit system outputs, i.e., reaction fraction and bed temperature, ii) application of response surface and Borgonovo’s global sensitivity analysis for efficient analysis, and iii) a comparative assessment between different uncertainty methods. The methodology is demonstrated for a space heating system. Initially, a surrogate relationship is constructed between inputs-outputs using moving least square response surface, based on known input-output data estimated using COMSOL for random input realizations. Next, the sensitive inputs were identified using Monte-Carlo simulations based Borgonovo’s analysis. Finally, the effect of uncertainties of sensitive inputs on outputs were estimated using different uncertainty methods. Harr’s and Hong’s (2n) point estimate methods were observed to be highly accurate, mathematically simpler and efficient, as compared to other methods. The uncertainties of outputs were directly dependent on uncertainties of sensitive inputs. The probabilistic safety measure, reliability index, estimated using output statistics was of significant practical utility for industries to avoid deterministic safety factors based over-conservative and costly designs of storage systems.

Suggested Citation

  • Tiwari, Saurabh & Kumar, Akshay & Tiwari, Gaurav & Sharma, Pratibha, 2025. "An efficient uncertainty analysis of performance of hydrogen storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008335
    DOI: 10.1016/j.rser.2024.115107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.