IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics136403212300624x.html
   My bibliography  Save this article

Wind turbine nacelle testing: State-of-the-art and development trends

Author

Listed:
  • Siddiqui, Muhammad Omer
  • Feja, Paul Robert
  • Borowski, Philipp
  • Kyling, Hans
  • Nejad, Amir R.
  • Wenske, Jan

Abstract

Wind turbine nacelles are complex machines that are designed to operate under extreme loads and harsh environments. Extensive tests are performed throughout their development process to ensure that they can operate with high reliability. As both onshore and offshore wind turbine systems have rapidly evolved, so have the methods for testing the nacelle systems and subsystems. This paper presents the state of the art in wind turbine nacelle testing and the development trends in this field. It discusses the existing test requirements for certification and the different levels of testing that form part of a nacelle system’s development. The latest changes to the nacelle certification requirements are highlighted, along with several important research activities related to drivetrain testing. Future challenges for nacelle testing are identified and their potential solutions are proposed.

Suggested Citation

  • Siddiqui, Muhammad Omer & Feja, Paul Robert & Borowski, Philipp & Kyling, Hans & Nejad, Amir R. & Wenske, Jan, 2023. "Wind turbine nacelle testing: State-of-the-art and development trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s136403212300624x
    DOI: 10.1016/j.rser.2023.113767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212300624X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    2. Pinar Pérez, Jesús María & García Márquez, Fausto Pedro & Tobias, Andrew & Papaelias, Mayorkinos, 2013. "Wind turbine reliability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 463-472.
    3. Julian Röder & Georg Jacobs & Tobias Duda & Dennis Bosse & Fabian Herzog, 2021. "Investigation of Dynamic Loads in Wind Turbine Drive Trains Due to Grid and Power Converter Faults," Energies, MDPI, vol. 14(24), pages 1-8, December.
    4. Esteban Bernal & Maksym Spiryagin & Colin Cole, 2022. "Wheel flat analogue fault detector verification study under dynamic testing conditions using a scaled bogie test rig," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 10(2), pages 177-194, March.
    5. Lennard Kaven & Anica Frehn & Maximilian Basler & Uwe Jassmann & Heiko Röttgers & Thomas Konrad & Dirk Abel & Antonello Monti, 2022. "Impact of Multi-Physics HiL Test Benches on Wind Turbine Certification," Energies, MDPI, vol. 15(4), pages 1-22, February.
    6. Fabian Vorpahl & Holger Schwarze & Tim Fischer & Marc Seidel & Jason Jonkman, 2013. "Offshore wind turbine environment, loads, simulation, and design," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(5), pages 548-570, September.
    7. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    8. Anand Natarajan, 2014. "An overview of the state of the art technologies for multi-MW scale offshore wind turbines and beyond," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 111-121, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    3. Wang, Feng & Chen, Jincheng & Xu, Bing & Stelson, Kim A., 2019. "Improving the reliability and energy production of large wind turbine with a digital hydrostatic drivetrain," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Zhang, Xiaoling & Zhang, Kejia & Yang, Xiao & Fazeres-Ferradosa, Tiago & Zhu, Shun-Peng, 2023. "Transfer learning and direct probability integral method based reliability analysis for offshore wind turbine blades under multi-physics coupling," Renewable Energy, Elsevier, vol. 206(C), pages 552-565.
    5. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    6. Abel Arredondo-Galeana & Feargal Brennan, 2021. "Floating Offshore Vertical Axis Wind Turbines: Opportunities, Challenges and Way Forward," Energies, MDPI, vol. 14(23), pages 1-24, November.
    7. Soszyńska-Budny Joanna & Chmielewski Mariusz & Pioch Joanna, 2023. "Reliability of Renewable Power Generation using the Example of Offshore Wind Farms," Folia Oeconomica Stetinensia, Sciendo, vol. 23(1), pages 228-245, June.
    8. Thiago F. do Nascimento & Evandro A. D. F. Nunes & Elmer R. L. Villarreal & Ricardo F. Pinheiro & Andrés O. Salazar, 2022. "Performance Analysis of an Electromagnetic Frequency Regulator under Parametric Variations for Wind System Applications," Energies, MDPI, vol. 15(8), pages 1-27, April.
    9. Belqasem Aljafari & Jasmin Pamela Stephenraj & Indragandhi Vairavasundaram & Raja Singh Rassiah, 2022. "Steady State Modeling and Performance Analysis of a Wind Turbine-Based Doubly Fed Induction Generator System with Rotor Control," Energies, MDPI, vol. 15(9), pages 1-19, May.
    10. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    11. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    12. Meng, Debiao & Yang, Shiyuan & Jesus, Abílio M.P. de & Zhu, Shun-Peng, 2023. "A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower," Renewable Energy, Elsevier, vol. 203(C), pages 407-420.
    13. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    14. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    15. Kisvari, Adam & Lin, Zi & Liu, Xiaolei, 2021. "Wind power forecasting – A data-driven method along with gated recurrent neural network," Renewable Energy, Elsevier, vol. 163(C), pages 1895-1909.
    16. Liang, Jinping & Zhang, Ke & Al-Durra, Ahmed & Zhou, Daming, 2020. "A novel fault diagnostic method in power converters for wind power generation system," Applied Energy, Elsevier, vol. 266(C).
    17. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    18. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    19. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    20. Lin, Zi & Cevasco, Debora & Collu, Maurizio, 2020. "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s136403212300624x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.