IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v185y2023ics1364032123005166.html
   My bibliography  Save this article

Performance of BiO1.5-xIx and composite quasi-photocatalysts for the removal of gaseous elemental Hg0 from coal combustion flue gases: A review

Author

Listed:
  • Kumar, Vanish
  • Younis, Sherif A.
  • Szulejko, Jan E.
  • Kim, Ki-Hyun

Abstract

The atmospheric emission of mercury occurs primarily in its elemental form (Hg0), although it can also proceed in an oxidized or particulate-bound form. Remediation of elemental Hg (Hg0) in coal combustion flue gas is extremely challenging due to its low affinity toward common adsorbents and low partial pressure in flue gas (e.g., < 3.0E-04 Pa). Herein, the photocatalytic removal potential of BiOI photocatalysts is assessed in its pristine (BiO1.5-xIx) and binary/ternary composite forms against gaseous Hg0 in light of their advantageous properties (e.g., desirable band structure for electron/hole generation, low band gap for visible light capture, abundant active sites, remarkable optical properties, and structural tunability). Accordingly, Ag (1%)/BiOI/ZnFe2O4 and BiOI microspheres are identified as the best performers in terms of figure of merit (FOM: 95 μg∙g−1∙L ∙h−1∙W−1) and quantum efficiency (QE: 3 × 10−6 molecule∙photon−1), respectively. In summary, BiO1.5-xIx photooxidation of Hg0 is not yet market-ready (e.g., in terms of 10% breakthrough volume and/or its negligible treatment capacity, i.e., <10 μg∙Hg∙(g catalyst)−1) when their potential is evaluated in terms of several key performance metrics (e.g., QE, FOM, space-time yield (STY), turnover number (TON), and 10% breakthrough). Especially in terms of FOM, there is still a gap of 7 orders (i.e., relative to ideal FOM) to treat Hg0 from the flue gases. In light of such limitations, several suggestions are proposed to help improve their mass processing performance against elemental Hg.

Suggested Citation

  • Kumar, Vanish & Younis, Sherif A. & Szulejko, Jan E. & Kim, Ki-Hyun, 2023. "Performance of BiO1.5-xIx and composite quasi-photocatalysts for the removal of gaseous elemental Hg0 from coal combustion flue gases: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123005166
    DOI: 10.1016/j.rser.2023.113659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick O. Waeber & Natasha Stoudmann & James D. Langston & Jaboury Ghazoul & Lucienne Wilmé & Jeffrey Sayer & Carlos Nobre & John L. Innes & Philip Fernbach & Steven A. Sloman & Claude A. Garcia, 2021. "Choices We Make in Times of Crisis," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    2. Steve Pye & Francis G. N. Li & James Price & Birgit Fais, 2017. "Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era," Nature Energy, Nature, vol. 2(3), pages 1-7, March.
    3. Zhang, Haonan & Zhang, Xingping & Yuan, Jiahai, 2020. "Transition of China's power sector consistent with Paris Agreement into 2050: Pathways and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    2. Yuan Liu & Qinliang Tan & Jian Han & Mingxin Guo, 2021. "Energy-Water-Carbon Nexus Optimization for the Path of Achieving Carbon Emission Peak in China Considering Multiple Uncertainties: A Case Study in Inner Mongolia," Energies, MDPI, vol. 14(4), pages 1-21, February.
    3. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Antonín Lupíšek & Tomáš Trubačík & Petr Holub, 2021. "Czech Building Stock: Renovation Wave Scenarios and Potential for CO 2 Savings until 2050," Energies, MDPI, vol. 14(9), pages 1-24, April.
    5. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Zhang, Mingming & Song, Wenwen & Liu, Liyun & Zhou, Dequn, 2024. "Optimal investment portfolio strategy for carbon neutrality of power enterprises," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Timár, Barnabás, 2023. "A klímavédelmi események hatása a köztudatra és a tőkepiacra. Empirikus vizsgálat Google-trends- és ETF-adatokon [The impact of climate events on public perception and capital markets. An empirical," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 713-745.
    9. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    10. Askar A. Akaev & Olga I. Davydova, 2021. "A Mathematical Description of Selected Energy Transition Scenarios in the 21st Century, Intended to Realize the Main Goals of the Paris Climate Agreement," Energies, MDPI, vol. 14(9), pages 1-28, April.
    11. Price, James & Zeyringer, Marianne & Konadu, Dennis & Sobral Mourão, Zenaida & Moore, Andy & Sharp, Ed, 2018. "Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective," Applied Energy, Elsevier, vol. 228(C), pages 928-941.
    12. Kim, Gyeongmin & Hur, Jin, 2023. "A probabilistic approach to potential estimation of renewable energy resources based on augmented spatial interpolation," Energy, Elsevier, vol. 263(PA).
    13. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    14. Gul, Eid & Riva, Lorenzo & Nielsen, Henrik Kofoed & Yang, Haiping & Zhou, Hewen & Yang, Qing & Skreiberg, Øyvind & Wang, Liang & Barbanera, Marco & Zampilli, Mauro & Bartocci, Pietro & Fantozzi, Franc, 2021. "Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: An LCA analysis," Applied Energy, Elsevier, vol. 304(C).
    15. Barry McMullin & Paul Price & Michael B. Jones & Alwynne H. McGeever, 2020. "Assessing negative carbon dioxide emissions from the perspective of a national “fair share” of the remaining global carbon budget," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 579-602, April.
    16. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    17. Chen, Jiandong & Xu, Chong & Wang, Yuzhi & Li, Ding & Song, Malin, 2021. "Carbon neutrality based on vegetation carbon sequestration for China's cities and counties: Trend, inequality and driver," Resources Policy, Elsevier, vol. 74(C).
    18. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
    20. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123005166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.