IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i8p6438-6454.html
   My bibliography  Save this article

Thermodynamics and exergoeconomic analysis of geothermal power plants

Author

Listed:
  • Yildirim, Deniz
  • Ozgener, Leyla

Abstract

Fossil fuel reserves (coal, oil, natural gas, etc.) diminish day by day. In addition, rapid advancement of technology causes an increase in the amount of energy needed. This emerging situation resulted in ever increasing importance of renewable energy sources, and various systems are being developed to utilize these renewable energy sources effectively.

Suggested Citation

  • Yildirim, Deniz & Ozgener, Leyla, 2012. "Thermodynamics and exergoeconomic analysis of geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6438-6454.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6438-6454
    DOI: 10.1016/j.rser.2012.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112004650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tchanche, B.F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2010. "Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system," Applied Energy, Elsevier, vol. 87(4), pages 1295-1306, April.
    2. Tsatsaronis, Georgios & Winhold, Michael, 1985. "Exergoeconomic analysis and evaluation of energy-conversion plants—I. A new general methodology," Energy, Elsevier, vol. 10(1), pages 69-80.
    3. Ozgener, Leyla & Ozgener, Onder, 2009. "Monitoring of energy exergy efficiencies and exergoeconomic parameters of geothermal district heating systems (GDHSs)," Applied Energy, Elsevier, vol. 86(9), pages 1704-1711, September.
    4. Ozgener, Leyla, 2012. "Coefficient of performance (COP) analysis of geothermal district heating systems (GDHSs): Salihli GDHS case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1330-1334.
    5. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    2. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    3. Abedin, M.J. & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Rahman, S.M. Ashrafur & Masum, B.M., 2013. "Energy balance of internal combustion engines using alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 20-33.
    4. Calise, F. & Dentice d'Accadia, M. & Piacentino, A., 2015. "Exergetic and exergoeconomic analysis of a renewable polygeneration system and viability study for small isolated communities," Energy, Elsevier, vol. 92(P3), pages 290-307.
    5. Ersayin, Erdem & Ozgener, Leyla, 2015. "Performance analysis of combined cycle power plants: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 832-842.
    6. Mengying Li & Noam Lior, 2014. "Comparative Analysis of Power Plant Options for Enhanced Geothermal Systems (EGS)," Energies, MDPI, vol. 7(12), pages 1-19, December.
    7. Wang, Lv & Ge, Zhong & Xu, Jian & Xie, Jianbin & Xie, Zhiyong, 2023. "Thermo-economic evaluations of novel dual-heater regenerative organic flash cycle (DROFC)," Energy, Elsevier, vol. 283(C).
    8. Leveni, Martina & Manfrida, Giampaolo & Cozzolino, Raffaello & Mendecka, Barbara, 2019. "Energy and exergy analysis of cold and power production from the geothermal reservoir of Torre Alfina," Energy, Elsevier, vol. 180(C), pages 807-818.
    9. Altun, A.F. & Kilic, M., 2020. "Thermodynamic performance evaluation of a geothermal ORC power plant," Renewable Energy, Elsevier, vol. 148(C), pages 261-274.
    10. Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
    11. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    12. Moya, Diego & Aldás, Clay & Kaparaju, Prasad, 2018. "Geothermal energy: Power plant technology and direct heat applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 889-901.
    13. Gökgedik, Harun & Yürüsoy, Muhammet & Keçebaş, Ali, 2016. "Improvement potential of a real geothermal power plant using advanced exergy analysis," Energy, Elsevier, vol. 112(C), pages 254-263.
    14. Baydar, Ceyhun & Koç, Yıldız & Yağlı, Hüseyin & Koç, Ali & Depci̇, Tolga & Aygün, Mustafa Kemal, 2023. "Experimental detection of inadequacies and improvements for a geothermal power plant using single shaft double turbine binary Organic Rankine cycle as power system," Energy, Elsevier, vol. 283(C).
    15. Samadi, Fereshteh & Kazemi, Neda, 2020. "Exergoeconomic analysis of zeotropic mixture on the new proposed organic Rankine cycle for energy production from geothermal resources," Renewable Energy, Elsevier, vol. 152(C), pages 1250-1265.
    16. Dai, Xiaoye & Shi, Lin & An, Qingsong & Qian, Weizhong, 2018. "Influence of alkane working fluid decomposition on supercritical organic Rankine cycle systems," Energy, Elsevier, vol. 153(C), pages 422-430.
    17. Hou, Qinlong & Zhao, Hongbin & Yang, Xiaoyu, 2019. "Economic performance study of the integrated MR-SOFC-CCHP system," Energy, Elsevier, vol. 166(C), pages 236-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baskut, Omer & Ozgener, Leyla, 2012. "Exergoeconomic assessment of a wind turbine power plant (WTTP): Cesme, Izmir, example," Energy, Elsevier, vol. 47(1), pages 577-581.
    2. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    3. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    4. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Paitazoglou, Christopher, 2012. "Environmental evaluation of a power plant using conventional and advanced exergy-based methods," Energy, Elsevier, vol. 45(1), pages 23-30.
    5. Tsatsaronis, George & Morosuk, Tatiana & Koch, Daniela & Sorgenfrei, Max, 2013. "Understanding the thermodynamic inefficiencies in combustion processes," Energy, Elsevier, vol. 62(C), pages 3-11.
    6. Marques, Adriano S. & Carvalho, Monica & Ochoa, Alvaro A.V. & Abrahão, Raphael & Santos, Carlos A.C., 2021. "Life cycle assessment and comparative exergoenvironmental evaluation of a micro-trigeneration system," Energy, Elsevier, vol. 216(C).
    7. Nguyen, Tuong-Van & Pierobon, Leonardo & Elmegaard, Brian & Haglind, Fredrik & Breuhaus, Peter & Voldsund, Mari, 2013. "Exergetic assessment of energy systems on North Sea oil and gas platforms," Energy, Elsevier, vol. 62(C), pages 23-36.
    8. Nguyen, Tuong-Van & Jacyno, Tomasz & Breuhaus, Peter & Voldsund, Mari & Elmegaard, Brian, 2014. "Thermodynamic analysis of an upstream petroleum plant operated on a mature field," Energy, Elsevier, vol. 68(C), pages 454-469.
    9. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    10. Keçebaş, Ali, 2011. "Performance and thermo-economic assessments of geothermal district heating system: A case study in Afyon, Turkey," Renewable Energy, Elsevier, vol. 36(1), pages 77-83.
    11. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    12. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    13. Usón, Sergio & Valero, Antonio & Correas, Luis, 2010. "Energy efficiency assessment and improvement in energy intensive systems through thermoeconomic diagnosis of the operation," Applied Energy, Elsevier, vol. 87(6), pages 1989-1995, June.
    14. Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
    15. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    16. Li, Jing & Pei, Gang & Li, Yunzhu & Ji, Jie, 2013. "Analysis of a novel gravity driven organic Rankine cycle for small-scale cogeneration applications," Applied Energy, Elsevier, vol. 108(C), pages 34-44.
    17. Montero, Gisela & Pulido, Ricardo & Pineda, Carlos & Rivero, Ricardo, 2006. "Ecotaxes and their impact in the cost of steam and electric energy generated by a steam turbine system," Energy, Elsevier, vol. 31(15), pages 3391-3400.
    18. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    19. Golonis, Chrysanthos & Skiadopoulos, Anastasios & Manolakos, Dimitris & Kosmadakis, George, 2021. "Assessment of the performance of a low-temperature Organic Rankine Cycle engine coupled with a concentrating PV-Thermal system," Renewable Energy, Elsevier, vol. 179(C), pages 1085-1097.
    20. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6438-6454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.