IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p4479-4490.html
   My bibliography  Save this article

Analysis of Jordan's industrial energy intensity and potential mitigations of energy and GHGs emissions

Author

Listed:
  • Al-Ghandoor, A.

Abstract

This paper aims to identify the main drivers behind energy intensity changes of the Jordanian industrial sector and to introduce the impact of energy efficient measures within the Jordanian industrial sector. To achieve these objectives, two empirical models were developed for electricity and fuel intensities, respectively of the Jordanian industrial sector based on multivariate linear regression. It was found that the structural effect, electricity prices, capacity utilizations and number of employees are the most important variables that affect changes of electricity intensity while fuel prices, capacity utilizations and number of employees factors are the most important variables that affect fuel intensity. The results show that multivariate linear regression model can be used adequately to simulate industrial energy intensity with very high coefficient of determination. Also, the impact of implementing energy saving technologies, such as use of high efficiency motors (HEMs), optimize motor size, variable speed drives (VSDs), bare steam pipes insulations, steam leak prevention, steam traps repair, and adjustment of boiler air/fuel ratio were investigated and found to be significant. Without such basic energy conservation and management programs, energy consumptions and associated GHG emissions for the industrial sector are predicted to rise by 25% and 23%, respectively in the year 2021. If these measures are implemented on a gradual basis, over the next decade, industrial energy consumption is predicted to rise at a lower rate, reaching 11.9% for same period with low/no cost actions. This would yield an estimated annual emission reductions of 570×103t. In addition, the total installed capacity cost savings is estimated to be around 81.9 million US$ by year 2021.

Suggested Citation

  • Al-Ghandoor, A., 2012. "Analysis of Jordan's industrial energy intensity and potential mitigations of energy and GHGs emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4479-4490.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4479-4490
    DOI: 10.1016/j.rser.2012.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112003358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    2. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    3. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
    4. Al-Ghandoor, Ahmed & Samhouri, Murad & Al-Hinti, Ismael & Jaber, Jamal & Al-Rawashdeh, Mohammad, 2012. "Projection of future transport energy demand of Jordan using adaptive neuro-fuzzy technique," Energy, Elsevier, vol. 38(1), pages 128-135.
    5. Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.
    2. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    3. Hamed, Tareq Abu & Bressler, Lindsey, 2019. "Energy security in Israel and Jordan: The role of renewable energy sources," Renewable Energy, Elsevier, vol. 135(C), pages 378-389.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    2. Hamed Khodayar Sahebi & Siamak Hoseinzadeh & Hossein Ghadamian & Mohammad Hadi Ghasemi & Farbod Esmaeilion & Davide Astiaso Garcia, 2021. "Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    3. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    4. Sarraf, M. & Rismanchi, B. & Saidur, R. & Ping, H.W. & Rahim, N.A., 2013. "Renewable energy policies for sustainable development in Cambodia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 223-229.
    5. Maammeur, H. & Hamidat, A. & Loukarfi, L. & Missoum, M. & Abdeladim, K. & Nacer, T., 2017. "Performance investigation of grid-connected PV systems for family farms: case study of North-West of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1208-1220.
    6. Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
    7. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    8. Sánchez, Gustavo Crespo & Monteagudo Yanes, José Pedro & Pérez, Milagros Montesino & Cabrera Sánchez, Jorge Luis & Padrón, Arturo Padrón & Haeseldonckx, Dries, 2020. "Efficiency in electromechanical drive motors and energy performance indicators for implementing a management system in balanced animal feed manufacturing," Energy, Elsevier, vol. 194(C).
    9. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    10. Md. Sanwar Hossain & Khondoker Ziaul Islam & Abu Jahid & Khondokar Mizanur Rahman & Sarwar Ahmed & Mohammed H. Alsharif, 2020. "Renewable Energy-Aware Sustainable Cellular Networks with Load Balancing and Energy-Sharing Technique," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    11. Zeng, Ziqiang & Nasri, Ehsan & Chini, Abdol & Ries, Robert & Xu, Jiuping, 2015. "A multiple objective decision making model for energy generation portfolio under fuzzy uncertainty: Case study of large scale investor-owned utilities in Florida," Renewable Energy, Elsevier, vol. 75(C), pages 224-242.
    12. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    13. Mehrbakhsh Nilashi & Fausto Cavallaro & Abbas Mardani & Edmundas Kazimieras Zavadskas & Sarminah Samad & Othman Ibrahim, 2018. "Measuring Country Sustainability Performance Using Ensembles of Neuro-Fuzzy Technique," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    14. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Sarker, M., 2015. "Energy scarcity and potential of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1636-1649.
    15. Urmee, Tania & Harries, David, 2011. "Determinants of the success and sustainability of Bangladesh’s SHS program," Renewable Energy, Elsevier, vol. 36(11), pages 2822-2830.
    16. Halder, P.K., 2016. "Potential and economic feasibility of solar home systems implementation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 568-576.
    17. Jin Zhang & Lianrui Ma & Jinkai Li, 2021. "Why Low-Carbon Publicity Effect Limits? The Role of Heterogeneous Intention in Reducing Household Energy Consumption," Energies, MDPI, vol. 14(22), pages 1-17, November.
    18. Milena N. Rajić & Rado M. Maksimović & Pedja Milosavljević & Dragan Pavlović, 2019. "Energy Management System Application for Sustainable Development in Wood Industry Enterprises," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    19. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    20. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4479-4490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.