IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006717.html
   My bibliography  Save this article

Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: A review

Author

Listed:
  • Bao, Wenjun
  • Li, Zifu
  • Wang, Xuemei
  • Gao, Ruiling
  • Zhou, Xiaoqin
  • Cheng, Shikun
  • Men, Yu
  • Zheng, Lei

Abstract

Microbial oils have become a research hotspot in alleviating energy challenges and environmental problems because of their potential to be green alternatives of traditional fossil fuels. Yarrowia lipolytica is a promising oleaginous yeast that can utilize various, especially low-cost carbon sources to synthesize considerable lipids more than 30% of dry cell weight, which is attracting researchers’ attention. Based on well understanding of its lipid synthesis and metabolism mechanism, various optimization approaches have been studied dispersedly to improve the lipid synthesis and realize the industrial-scale application of Y. lipolytica. Some approaches are focused on improving and optimizing culture conditions, such as temperature, pH value, and rotating speed, etc. Other approaches are dedicated to the optimization of nutrient elements, such as carbon source, nitrogen source type and/or concentration, and C/N ratio, etc. Some adjust the cultivation mode to facilitate nutrient assimilation and transformation, and others use genetic engineering to modify this yeast. This review focuses on the comprehensive and detailed analyses of feasible enhancement approaches for lipid synthesis. Some prospects will also be introduced as references for further study.

Suggested Citation

  • Bao, Wenjun & Li, Zifu & Wang, Xuemei & Gao, Ruiling & Zhou, Xiaoqin & Cheng, Shikun & Men, Yu & Zheng, Lei, 2021. "Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006717
    DOI: 10.1016/j.rser.2021.111386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajabi Islami, Houman & Assareh, Reza, 2020. "Enhancement effects of ferric ion concentrations on growth and lipid characteristics of freshwater microalga Chlorococcum oleofaciens KF584224.1 for biodiesel production," Renewable Energy, Elsevier, vol. 149(C), pages 264-272.
    2. Qian, Xiujuan & Gorte, Olga & Chen, Lin & Zhang, Wenming & Dong, Weiliang & Ma, Jiangfeng & Xin, Fengxue & Jiang, Min & Ochsenreither, Katrin, 2020. "Continuous self-provided fermentation for microbial lipids production from acetate by using oleaginous yeasts Cryptococcus podzolicus and Trichosporon porosum," Renewable Energy, Elsevier, vol. 146(C), pages 737-743.
    3. Unrean, Pornkamol & Khajeeram, Sutamat & Champreda, Verawat, 2017. "Combining metabolic evolution and systematic fed-batch optimization for efficient single-cell oil production from sugarcane bagasse," Renewable Energy, Elsevier, vol. 111(C), pages 295-306.
    4. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    5. John Blazeck & Andrew Hill & Leqian Liu & Rebecca Knight & Jarrett Miller & Anny Pan & Peter Otoupal & Hal S. Alper, 2014. "Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production," Nature Communications, Nature, vol. 5(1), pages 1-10, May.
    6. Yook, Sang Do & Kim, Jiwon & Woo, Han Min & Um, Youngsoon & Lee, Sun-Mi, 2019. "Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents," Renewable Energy, Elsevier, vol. 132(C), pages 61-67.
    7. Meng, Xin & Yang, Jianming & Xu, Xin & Zhang, Lei & Nie, Qingjuan & Xian, Mo, 2009. "Biodiesel production from oleaginous microorganisms," Renewable Energy, Elsevier, vol. 34(1), pages 1-5.
    8. Katre, Gouri & Raskar, Shubham & Zinjarde, Smita & Ravi Kumar, V. & Kulkarni, B.D. & RaviKumar, Ameeta, 2018. "Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil," Energy, Elsevier, vol. 142(C), pages 944-952.
    9. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    10. Zhao, Chen & Xie, Bing & Zhao, Runze & Fang, Hao, 2019. "Microbial oil production by Mortierella isabellina from sodium hydroxide pretreated rice straw degraded by three-stage enzymatic hydrolysis in the context of on-site cellulase production," Renewable Energy, Elsevier, vol. 130(C), pages 281-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caporusso, Antonio & De Bari, Isabella & Liuzzi, Federico & Albergo, Roberto & Valerio, Vito & Viola, Egidio & Pietrafesa, Rocchina & Siesto, Gabriella & Capece, Angela, 2023. "Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels," Renewable Energy, Elsevier, vol. 202(C), pages 184-195.
    2. Mohammed S. Almuhayawi & Elhagag A. Hassan & Saad Almasaudi & Nidal Zabermawi & Esam I. Azhar & Azhar Najjar & Khalil Alkuwaity & Turki S. Abujamel & Turki Alamri & Steve Harakeh, 2023. "Biodiesel Production through Rhodotorula toruloides Lipids and Utilization of De-Oiled Biomass for Congo Red Removal," Sustainability, MDPI, vol. 15(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Yook, Sang Do & Kim, Jiwon & Woo, Han Min & Um, Youngsoon & Lee, Sun-Mi, 2019. "Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents," Renewable Energy, Elsevier, vol. 132(C), pages 61-67.
    3. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    5. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    6. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    7. Yuan, Hao & Zhang, Xinru & Jiang, Zeyi & Wang, Xinyu & Wang, Yi & Cao, Limei & Zhang, Xinxin, 2020. "Effect of light spectra on microalgal biofilm: Cell growth, photosynthetic property, and main organic composition," Renewable Energy, Elsevier, vol. 157(C), pages 83-89.
    8. Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
    9. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    10. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    11. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    12. Marco Castellini & Stefano Ubertini & Diego Barletta & Ilaria Baffo & Pietro Buzzini & Marco Barbanera, 2021. "Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source," Energies, MDPI, vol. 14(5), pages 1-21, March.
    13. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    14. Carvalho, Ana Karine F. & Bento, Heitor B.S. & Izário Filho, Hélcio J. & de Castro, Heizir F., 2018. "Approaches to convert Mucor circinelloides lipid into biodiesel by enzymatic synthesis assisted by microwave irradiations," Renewable Energy, Elsevier, vol. 125(C), pages 747-754.
    15. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Nouri, Hoda & Moghimi, Hamid & Nikbakht Rad, Mahzad & Ostovar, Marjan & Farazandeh Mehr, Shima Sadat & Ghanaatian, Fateme & Talebi, Ahmad Farhad, 2019. "Enhanced growth and lipid production in oleaginous fungus, Sarocladium kiliense ADH17: Study on fatty acid profiling and prediction of biodiesel properties," Renewable Energy, Elsevier, vol. 135(C), pages 10-20.
    17. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    18. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    19. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.
    20. Mondala, Andro & Hernandez, Rafael & French, Todd & Green, Magan & McFarland, Linda & Ingram, Lonnie, 2015. "Enhanced microbial oil production by activated sludge microorganisms from sugarcane bagasse hydrolyzate," Renewable Energy, Elsevier, vol. 78(C), pages 114-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.