IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i5p1000-1013.html
   My bibliography  Save this article

Hydrogen production by fermentative consortia

Author

Listed:
  • Valdez-Vazquez, Idania
  • Poggi-Varaldo, Héctor M.

Abstract

In this work, H2 production by anaerobic mixed cultures was reviewed. First, the different anaerobic microbial communities that have a direct relation with the generation or consumption of H2 are discussed. Then, the different methods used to inhibit the H2-consuming bacteria are analyzed (mainly in the methanogenesis phase) such as biokinetic control (low pH and short hydraulic retention time), heat-shock treatment and chemical inhibitors along with their advantages/disadvantages for their application on an industrial scale. After that, biochemical pathways of carbohydrate degradation to H2, organic acids and solvents are showed. Fourth, structure, diversity and dynamics of H2-producers communities are detailed. Later, the hydrogenase structure and activity is related with H2 production. Also, the causes for H2 production inhibition are analyzed along with strategies to avoid it. Finally, immobilized-cells systems are presented as a way to enhance H2 production.

Suggested Citation

  • Valdez-Vazquez, Idania & Poggi-Varaldo, Héctor M., 2009. "Hydrogen production by fermentative consortia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1000-1013, June.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:5:p:1000-1013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00051-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    2. Shanmugam, Saravanan R. & Lalman, Jerald A. & Chaganti, Subba Rao & Heath, Daniel D. & Lau, Peter C.K. & Shewa, Wudneh A., 2016. "Long term impact of stressing agents on fermentative hydrogen production: Effect on the hydrogenase flux and population diversity," Renewable Energy, Elsevier, vol. 88(C), pages 483-493.
    3. Ester Scotto di Perta & Alessandra Cesaro & Stefania Pindozzi & Luigi Frunzo & Giovanni Esposito & Stefano Papirio, 2022. "Assessment of Hydrogen and Volatile Fatty Acid Production from Fruit and Vegetable Waste: A Case Study of Mediterranean Markets," Energies, MDPI, vol. 15(14), pages 1-15, July.
    4. Wen, Han-Quan & Xing, De-Feng & Xie, Guo-Jun & Yin, Tian-Ming & Ren, Nan-Qi & Liu, Bing-Feng, 2019. "Enhanced photo-fermentative hydrogen production by synergistic effects of formed biofilm and added L-cysteine," Renewable Energy, Elsevier, vol. 139(C), pages 643-650.
    5. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Gulhane, Madhuri & Pandit, Prabhakar & Khardenavis, Anshuman & Singh, Dharmesh & Purohit, Hemant, 2017. "Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor," Renewable Energy, Elsevier, vol. 101(C), pages 59-66.
    7. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    8. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    9. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Gottardo, Marco & Micolucci, Federico & Bolzonella, David & Uellendahl, Hinrich & Pavan, Paolo, 2017. "Pilot scale fermentation coupled with anaerobic digestion of food waste - Effect of dynamic digestate recirculation," Renewable Energy, Elsevier, vol. 114(PB), pages 455-463.
    11. Fu, Qizi & Wang, Dongbo & Li, Xiaoming & Yang, Qi & Xu, Qiuxiang & Ni, Bing-Jie & Wang, Qilin & Liu, Xuran, 2021. "Towards hydrogen production from waste activated sludge: Principles, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Tirthankar Mukherjee & Eric Trably & Prasad Kaparaju, 2023. "Critical Assessment of Hydrogen and Methane Production from 1G and 2G Sugarcane Processing Wastes Using One-Stage and Two-Stage Anaerobic Digestion," Energies, MDPI, vol. 16(13), pages 1-22, June.
    13. Castelló, Elena & Nunes Ferraz-Junior, Antonio Djalma & Andreani, Cristiane & Anzola-Rojas, Melida del Pilar & Borzacconi, Liliana & Buitrón, Germán & Carrillo-Reyes, Julián & Gomes, Simone Damasceno , 2020. "Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Shah, A.T. & Favaro, L. & Alibardi, L. & Cagnin, L. & Sandon, A. & Cossu, R. & Casella, S. & Basaglia, M., 2016. "Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste," Applied Energy, Elsevier, vol. 176(C), pages 116-124.
    15. Luo, Gang & Xie, Li & Zou, Zhonghai & Zhou, Qi & Wang, Jing-Yuan, 2010. "Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH," Applied Energy, Elsevier, vol. 87(12), pages 3710-3717, December.
    16. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    17. Shivali Sahota & Subodh Kumar & Lidia Lombardi, 2024. "Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects," Energies, MDPI, vol. 17(3), pages 1-27, January.
    18. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    19. Hernández, M. & Rodríguez, M., 2013. "Hydrogen production by anaerobic digestion of pig manure: Effect of operating conditions," Renewable Energy, Elsevier, vol. 53(C), pages 187-192.
    20. Ortigueira, Joana & Pinto, Tiago & Gouveia, Luísa & Moura, Patrícia, 2015. "Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum," Energy, Elsevier, vol. 88(C), pages 528-536.
    21. Bakonyi, P. & Nemestóthy, N. & Simon, V. & Bélafi-Bakó, K., 2014. "Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 806-813.
    22. Yang, Zhiman & Guo, Rongbo & Xu, Xiaohui & Fan, Xiaolei & Luo, Shengjun, 2011. "Fermentative hydrogen production from lipid-extracted microalgal biomass residues," Applied Energy, Elsevier, vol. 88(10), pages 3468-3472.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:5:p:1000-1013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.