IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics1364032121000137.html
   My bibliography  Save this article

Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment

Author

Listed:
  • Liu, Yang
  • Lyu, Yizheng
  • Tian, Jinping
  • Zhao, Jialing
  • Ye, Ning
  • Zhang, Yongming
  • Chen, Lujun

Abstract

Nowadays, reducing the environmental impact of biorefinery is a common concern of scholars. life cycle assessment (LCA) is a widely used method to evaluate the environmental impact of biorefinery. Considering the lack of a latest review on the progress and existing problems related to biorefinery based on LCA studies, this paper carried out a systematic review of the evaluation of environmental impact of biorefinery based on LCA, and proposed the development strategies for waste biorefineries by targeting literature on LCA methods. After finding out the imperfections existing in the current researches, the paper then constructed a comprehensive and systematic biorefinery framework with a standard LCA employed as a reference template for following researches. 92 peer-reviewed articles published in Web of Science, Springer and Scopus from 2015 to 2019 with LCA and biorefinery as the keywords were considered. The key findings are as follows: (1) Agricultural waste and industrial residues are the top two feedstocks widely employed, accounting for 32.61% and 29.35% respectively; (2) the primary data is scarce. The foreground data of LCA is 56.52% from the researches of other scholars; (3) the LCA methods are not standardized. 30.26% and 18.42% have unclear system boundaries and functional units; and (4) there is a lack of estimating the influences of various uncontrollable external factors in the biorefinery process. Furthermore, the review highlighted and discussed the defects of biorefineries, a robust LCA template that can be used for evaluating the environmental impact of biorefinery was constructed, taking algae biorefinery as an example.

Suggested Citation

  • Liu, Yang & Lyu, Yizheng & Tian, Jinping & Zhao, Jialing & Ye, Ning & Zhang, Yongming & Chen, Lujun, 2021. "Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032121000137
    DOI: 10.1016/j.rser.2021.110716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khoshnevisan, Benyamin & Tabatabaei, Meisam & Tsapekos, Panagiotis & Rafiee, Shahin & Aghbashlo, Mortaza & Lindeneg, Susanne & Angelidaki, Irini, 2020. "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Armando Caldeira-Pires & Sandra Maria Da Luz & Silvia Palma-Rojas & Thiago Oliveira Rodrigues & Vanessa Chaves Silverio & Frederico Vilela & Paulo Cesar Barbosa & Ana Maria Alves, 2013. "Sustainability of the Biorefinery Industry for Fuel Production," Energies, MDPI, vol. 6(1), pages 1-22, January.
    3. García Prieto, Carla V. & Ramos, Fernando D. & Estrada, Vanina & Villar, Marcelo A. & Diaz, M. Soledad, 2017. "Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB," Energy, Elsevier, vol. 139(C), pages 1159-1172.
    4. Milão, Raquel de Freitas Dias & Carminati, Hudson B. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Thermodynamic, financial and resource assessments of a large-scale sugarcane-biorefinery: Prelude of full bioenergy carbon capture and storage scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Aghbashlo, Mortaza & Mandegari, Mohsen & Tabatabaei, Meisam & Farzad, Somayeh & Mojarab Soufiyan, Mohamad & Görgens, Johann F., 2018. "Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production," Energy, Elsevier, vol. 149(C), pages 623-638.
    6. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    7. Soltanian, Salman & Aghbashlo, Mortaza & Farzad, Somayeh & Tabatabaei, Meisam & Mandegari, Mohsen & Görgens, Johann F., 2019. "Exergoeconomic analysis of lactic acid and power cogeneration from sugarcane residues through a biorefinery approach," Renewable Energy, Elsevier, vol. 143(C), pages 872-889.
    8. Unrean, Pornkamol & Lai Fui, Bridgid Chin & Rianawati, Elisabeth & Acda, Menandro, 2018. "Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies," Energy, Elsevier, vol. 151(C), pages 581-593.
    9. Swain, Pravat K. & Das, L.M. & Naik, S.N., 2011. "Biomass to liquid: A prospective challenge to research and development in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4917-4933.
    10. Cremiato, Raffaele & Mastellone, Maria Laura & Tagliaferri, Carla & Zaccariello, Lucio & Lettieri, Paola, 2018. "Environmental impact of municipal solid waste management using Life Cycle Assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production," Renewable Energy, Elsevier, vol. 124(C), pages 180-188.
    11. Fuess, Lucas Tadeu & Klein, Bruno Colling & Chagas, Mateus Ferreira & Alves Ferreira Rezende, Mylene Cristina & Garcia, Marcelo Loureiro & Bonomi, Antonio & Zaiat, Marcelo, 2018. "Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach," Renewable Energy, Elsevier, vol. 122(C), pages 674-687.
    12. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    13. Garlapati, Vijay Kumar & Chandel, Anuj K. & Kumar, S.P. Jeevan & Sharma, Swati & Sevda, Surajbhan & Ingle, Avinash P. & Pant, Deepak, 2020. "Circular economy aspects of lignin: Towards a lignocellulose biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Davis, Ryan & Aden, Andy & Pienkos, Philip T., 2011. "Techno-economic analysis of autotrophic microalgae for fuel production," Applied Energy, Elsevier, vol. 88(10), pages 3524-3531.
    15. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 136-146.
    16. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Phuong Nguyen & Dinh Tuyen Nguyen & Van Viet Pham & Dinh Tung Vo, 2022. "Highlights Of Oil Treatment Technologies And Rise Of Oil-Absorbing Materials In Ocean Cleaning Strategy," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 6(1), pages 06-14, January.
    2. Abderahman Rejeb & Karim Rejeb & Suhaiza Zailani & Yasanur Kayikci & John G. Keogh, 2023. "Examining Knowledge Diffusion in the Circular Economy Domain: a Main Path Analysis," Circular Economy and Sustainability,, Springer.
    3. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
    4. Felipe Romero-Perdomo & Miguel Ángel González-Curbelo, 2023. "Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    5. Enora Barrau & Mathias Glaus, 2022. "Structural and Environmental Performance of Evolving Industrial Symbiosis: A Multidimensional Analysis," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    6. Badr Moutik & John Summerscales & Jasper Graham-Jones & Richard Pemberton, 2023. "Life Cycle Assessment Research Trends and Implications: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(18), pages 1-45, September.
    7. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Tahereh Soleymani Angili & Katarzyna Grzesik & Erfaneh Salimi & Maria Loizidou, 2022. "Life Cycle Analysis of Food Waste Valorization in Laboratory-Scale," Energies, MDPI, vol. 15(19), pages 1-17, September.
    9. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Fallahi, Alireza & Farzad, Somayeh & Mohtasebi, Seyed Saeid & Mandegari, Mohsen & Görgens, Johann F. & Gupta, Vijai Kumar & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2021. "Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    7. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    8. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    9. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    12. Zhiyong Liu & Chenfeng Liu & Yuyong Hou & Shulin Chen & Dongguang Xiao & Juankun Zhang & Fangjian Chen, 2013. "Isolation and Characterization of a Marine Microalga for Biofuel Production with Astaxanthin as a Co-Product," Energies, MDPI, vol. 6(6), pages 1-14, May.
    13. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    14. Souza, Simone P. & Gopal, Anand R. & Seabra, Joaquim E.A., 2015. "Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery," Energy, Elsevier, vol. 81(C), pages 373-381.
    15. Colin M. Beal & Robert E. Hebner & Michael E. Webber & Rodney S. Ruoff & A. Frank Seibert & Carey W. King, 2012. "Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results," Energies, MDPI, vol. 5(6), pages 1-39, June.
    16. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Bagnato, Giuseppe & Boulet, Florent & Sanna, Aimaro, 2019. "Effect of Li-LSX zeolite, NiCe/Al2O3 and NiCe/ZrO2 on the production of drop-in bio-fuels by pyrolysis and hydrotreating of Nannochloropsis and isochrysis microalgae," Energy, Elsevier, vol. 179(C), pages 199-213.
    18. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    19. Hognon, Céline & Delrue, Florian & Boissonnet, Guillaume, 2015. "Energetic and economic evaluation of Chlamydomonas reinhardtii hydrothermal liquefaction and pyrolysis through thermochemical models," Energy, Elsevier, vol. 93(P1), pages 31-40.
    20. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032121000137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.