IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp1159-1172.html
   My bibliography  Save this article

Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB

Author

Listed:
  • García Prieto, Carla V.
  • Ramos, Fernando D.
  • Estrada, Vanina
  • Villar, Marcelo A.
  • Diaz, M. Soledad

Abstract

In this work, we address the optimal design of an integrated microalgae-based biorefinery through the formulation of a mixed integer nonlinear programming model for the production of biodiesel and potential high-added value products. Main bioproducts are poly (hydroxybutyrate) (PHB) and astaxanthin. A combined heat and power cycle to transform biogas generated by the anaerobic digestion of waste streams is also included in the superstructure. Mass and energy balances are formulated for the biorefinery. Different alternatives for PHB extraction are taken into account. The anaerobic digestion model accounts for detailed composition of the different feed streams. Detailed capital cost models for process equipment are formulated and implemented in GAMS to maximize net present value (NPV). Results show that the production of astaxanthin and PHB provides a way to make biodiesel production economically feasible. Open pond and surfactant-chelate are selected for microalgae cultivation and PHB extraction method, respectively. Biodiesel price can be reduced to $0.48 due to incomes from astaxanthin and PHB sales. Also, an economic sensitivity analysis is performed. Further comparison between domestic and international cost conditions is carried out, showing higher NPV in the domestic case.

Suggested Citation

  • García Prieto, Carla V. & Ramos, Fernando D. & Estrada, Vanina & Villar, Marcelo A. & Diaz, M. Soledad, 2017. "Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB," Energy, Elsevier, vol. 139(C), pages 1159-1172.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1159-1172
    DOI: 10.1016/j.energy.2017.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    2. Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    3. Liu, Yang & Lyu, Yizheng & Tian, Jinping & Zhao, Jialing & Ye, Ning & Zhang, Yongming & Chen, Lujun, 2021. "Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Benjamin W. Portner & Antonio Valente & Sandy Guenther, 2021. "Sustainability Assessment of Combined Animal Fodder and Fuel Production from Microalgal Biomass," IJERPH, MDPI, vol. 18(21), pages 1-18, October.
    5. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Michelle Dias Hornes da Rosa & Cristina Jansen Alves & Felipe Nardo dos Santos & Alexander Ossanes de Souza & Elessandra da Rosa Zavareze & Ernani Pinto & Miguel Daniel Noseda & Daniela Ramos & Cláudi, 2023. "Macroalgae and Microalgae Biomass as Feedstock for Products Applied to Bioenergy and Food Industry: A Brief Review," Energies, MDPI, vol. 16(4), pages 1-14, February.
    7. Escobar, Neus & Laibach, Natalie, 2021. "Sustainability check for bio-based technologies: A review of process-based and life cycle approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Rocha-Meneses, Lisandra & Raud, Merlin & Orupõld, Kaja & Kikas, Timo, 2019. "Potential of bioethanol production waste for methane recovery," Energy, Elsevier, vol. 173(C), pages 133-139.
    9. Khanzada, Zareen T. & Övez, Süleyman, 2017. "Microalgae as a sustainable biological system for improving leachate quality," Energy, Elsevier, vol. 140(P1), pages 757-765.
    10. Grira, Soumaya & Abu Khalifeh, Hadil & Alkhedher, Mohammad & Ramadan, Mohamad, 2023. "The conventional microalgal biofuel production process and the alternative milking pathway: A review," Energy, Elsevier, vol. 277(C).
    11. Celine Marie A. Solis & Jayne Lois G. San Juan & Andres Philip Mayol & Charlle L. Sy & Aristotle T. Ubando & Alvin B. Culaba, 2021. "A Multi-Objective Life Cycle Optimization Model of an Integrated Algal Biorefinery toward a Sustainable Circular Bioeconomy Considering Resource Recirculation," Energies, MDPI, vol. 14(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1159-1172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.