IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v127y2020ics1364032120301325.html
   My bibliography  Save this article

Review of zinc dendrite formation in zinc bromine redox flow battery

Author

Listed:
  • Xu, Zhicheng
  • Fan, Qi
  • Li, Yang
  • Wang, Jun
  • Lund, Peter D.

Abstract

The zinc bromine redox flow battery (ZBFB) is a promising battery technology because of its potentially lower cost, higher efficiency, and relatively long life-time. However, for large-scale applications the formation of zinc dendrites in ZBFB is of a major concern. Details on formation, characterization, and state-of-the-art of preventing zinc dendrites are presented here and analyzed both from a micro and macro perspective. Generally, the zinc dendrite formation includes an initiation and a growth stage. The overpotential is the determining factor for the initiation of dendrites, while the initiation time and the deposition morphology of further growth are largely related to the localized current density. The dominant strategies for preventing dendritic growth include reducing the concentration gradient of ions, eliminating the nonuniform localized current density, and changing the nuclear potential of zinc ions. Improving the electrolyte and electrode performance as well as managing the physical properties of the battery would be of great importance for these purposes. Several promising ideas to solve the zinc dendrite issue are proposed such as covering 3D porous electrodes with a zinc oxide film or employing a self-healing electrostatic shield mechanism.

Suggested Citation

  • Xu, Zhicheng & Fan, Qi & Li, Yang & Wang, Jun & Lund, Peter D., 2020. "Review of zinc dendrite formation in zinc bromine redox flow battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  • Handle: RePEc:eee:rensus:v:127:y:2020:i:c:s1364032120301325
    DOI: 10.1016/j.rser.2020.109838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120301325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bin Li & Zimin Nie & M. Vijayakumar & Guosheng Li & Jun Liu & Vincent Sprenkle & Wei Wang, 2015. "Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    2. Arenas, Luis F. & Loh, Adeline & Trudgeon, David P. & Li, Xiaohong & Ponce de León, Carlos & Walsh, Frank C., 2018. "The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 992-1016.
    3. Jiang, H.R. & Wu, M.C. & Ren, Y.X. & Shyy, W. & Zhao, T.S., 2018. "Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries," Applied Energy, Elsevier, vol. 213(C), pages 366-374.
    4. Zhizhang Yuan & Xiaoqi Liu & Wenbin Xu & Yinqi Duan & Huamin Zhang & Xianfeng Li, 2018. "Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatoly Antipov & Roman Pichugov & Lilia Abunaeva & Shengfu Tong & Mikhail Petrov & Alla Pustovalova & Ivan Speshilov & Natalia Kartashova & Pavel Loktionov & Alexander Modestov & Artem Glazkov, 2022. "Halogen Hybrid Flow Batteries Advances for Stationary Chemical Power Sources Technologies," Energies, MDPI, vol. 15(19), pages 1-20, October.
    2. Ye-Qi Zhang & Guang-Xu Wang & Ru-Yi Liu & Tian-Hu Wang, 2023. "Operational Parameter Analysis and Performance Optimization of Zinc–Bromine Redox Flow Battery," Energies, MDPI, vol. 16(7), pages 1-18, March.
    3. Djamila Rekioua, 2023. "Energy Storage Systems for Photovoltaic and Wind Systems: A Review," Energies, MDPI, vol. 16(9), pages 1-26, May.
    4. Olabi, A.G. & Wilberforce, Tabbi & Sayed, Enas Taha & Abo-Khalil, Ahmed G. & Maghrabie, Hussein M. & Elsaid, Khaled & Abdelkareem, Mohammad Ali, 2022. "Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission," Energy, Elsevier, vol. 254(PA).
    5. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    6. Igor Iwakiri & Tiago Antunes & Helena Almeida & João P. Sousa & Rita Bacelar Figueira & Adélio Mendes, 2021. "Redox Flow Batteries: Materials, Design and Prospects," Energies, MDPI, vol. 14(18), pages 1-45, September.
    7. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Jiang, H.R. & Zeng, Y.K. & Wu, M.C. & Shyy, W. & Zhao, T.S., 2019. "A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 240(C), pages 226-235.
    3. Jiang, H.R. & Shyy, W. & Wu, M.C. & Zhang, R.H. & Zhao, T.S., 2019. "A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 105-113.
    4. Jiang, H.R. & Shyy, W. & Ren, Y.X. & Zhang, R.H. & Zhao, T.S., 2019. "A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 544-553.
    5. Shang, Wenxu & Yu, Wentao & Xiao, Xu & Ma, Yanyi & Chen, Ziqi & Ni, Meng & Tan, Peng, 2022. "Optimizing the charging protocol to address the self-discharge issues in rechargeable alkaline Zn-Co batteries," Applied Energy, Elsevier, vol. 308(C).
    6. Yuhua Xia & Mengzheng Ouyang & Vladimir Yufit & Rui Tan & Anna Regoutz & Anqi Wang & Wenjie Mao & Barun Chakrabarti & Ashkan Kavei & Qilei Song & Anthony R. Kucernak & Nigel P. Brandon, 2022. "A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Thangavel Sangeetha & Po-Tuan Chen & Wu-Fu Cheng & Wei-Mon Yan & K. David Huang, 2019. "Optimization of the Electrolyte Parameters and Components in Zinc Particle Fuel Cells," Energies, MDPI, vol. 12(6), pages 1-13, March.
    8. Wei, L. & Zhao, T.S. & Zeng, L. & Zhou, X.L. & Zeng, Y.K., 2016. "Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries," Applied Energy, Elsevier, vol. 180(C), pages 386-391.
    9. Wang, Keliang & Pei, Pucheng & Wang, Yichun & Liao, Cheng & Wang, Wei & Huang, Shangwei, 2018. "Advanced rechargeable zinc-air battery with parameter optimization," Applied Energy, Elsevier, vol. 225(C), pages 848-856.
    10. Igor Iwakiri & Tiago Antunes & Helena Almeida & João P. Sousa & Rita Bacelar Figueira & Adélio Mendes, 2021. "Redox Flow Batteries: Materials, Design and Prospects," Energies, MDPI, vol. 14(18), pages 1-45, September.
    11. Anatoly Antipov & Roman Pichugov & Lilia Abunaeva & Shengfu Tong & Mikhail Petrov & Alla Pustovalova & Ivan Speshilov & Natalia Kartashova & Pavel Loktionov & Alexander Modestov & Artem Glazkov, 2022. "Halogen Hybrid Flow Batteries Advances for Stationary Chemical Power Sources Technologies," Energies, MDPI, vol. 15(19), pages 1-20, October.
    12. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    13. Raymond Leopold Heydorn & Jana Niebusch & David Lammers & Marion Görke & Georg Garnweitner & Katrin Dohnt & Rainer Krull, 2022. "Production and Characterization of Bacterial Cellulose Separators for Nickel-Zinc Batteries," Energies, MDPI, vol. 15(15), pages 1-20, August.
    14. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    15. Sangeetha, Thangavel & Chen, Po-Tuan & Yan, Wei-Mon & Huang, K. David, 2020. "Enhancement of air-flow management in Zn-air fuel cells by the optimization of air-flow parameters," Energy, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:127:y:2020:i:c:s1364032120301325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.