IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119307154.html
   My bibliography  Save this article

Development of smart energy towns in China: Concept and practices

Author

Listed:
  • Liang, Xuesheng
  • Ma, Linwei
  • Chong, Chinhao
  • Li, Zheng
  • Ni, Weidou

Abstract

With increasing needs for the development of both smart cities and smart energy systems, the intersection concept of smart energy city (SEC) have been emerged in recent years. However, there is still lack of discussions on this concept with the background of developing countries. With serious challenges of urbanization and energy, China can provide a prominent case to further deep the understanding of this concept in the background of a rapidly developing country. This manuscript aims to propose and define a new concept of smart energy towns (SET) according to recent theoretical progress and China's practical experience on SEC. First, we reviewed the connotations of smart city, smart energy systems, and smart energy city, and then derive a definition of SET according to China's national conditions. Second, we introduced the status quo of SET projects in China, and identify the gaps and barriers to development SET as compared with the definition. Finally, from the view of four stakeholders, including China's central government, international organization, China's regional government, and enterprises, we put forward some actions recommendations for the development of China's SET. The main findings are that compared with SEC, SET emphasizes the importance of overall planning of energy and urbanization, as well as promoting business model innovation to support economic development. The main barriers to the development of SET in China lies in the lack of planning and policy support for local projects by regional governments, as well as the lack of funds and capacity of local enterprises to carry out project construction. To this end, stakeholders must work together to help cities and towns strengthen project planning and policy research, as well as jointly strengthen investment and explore practical business models suitable for each region to promote the development of SET in China.

Suggested Citation

  • Liang, Xuesheng & Ma, Linwei & Chong, Chinhao & Li, Zheng & Ni, Weidou, 2020. "Development of smart energy towns in China: Concept and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307154
    DOI: 10.1016/j.rser.2019.109507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    2. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    3. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    4. Yang, Libing & Entchev, Evgueniy & Rosato, Antonio & Sibilio, Sergio, 2017. "Smart thermal grid with integration of distributed and centralized solar energy systems," Energy, Elsevier, vol. 122(C), pages 471-481.
    5. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    6. Shi, Huaizhou & Blaauwbroek, Niels & Nguyen, Phuong H. & Kamphuis, René (I.G.), 2016. "Energy management in Multi-Commodity Smart Energy Systems with a greedy approach," Applied Energy, Elsevier, vol. 167(C), pages 385-396.
    7. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    8. Li, Zheng & Chang, Shiyao & Ma, Linwei & Liu, Pei & Zhao, Lingxiao & Yao, Qiang, 2012. "The development of low-carbon towns in China: Concepts and practices," Energy, Elsevier, vol. 47(1), pages 590-599.
    9. Mosannenzadeh, Farnaz & Di Nucci, Maria Rosaria & Vettorato, Daniele, 2017. "Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach," Energy Policy, Elsevier, vol. 105(C), pages 191-201.
    10. Sofia T. Shwayri, 2013. "A Model Korean Ubiquitous Eco-City? The Politics of Making Songdo," Journal of Urban Technology, Taylor & Francis Journals, vol. 20(1), pages 39-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Jian & Zhong, Xiaoyi & Wang, Jing & Huang, Yuan & Bai, Xuetao & Wang, Xiaonan & Shah, Nilay & Xie, Shan & Zhao, Yingru, 2021. "Relative optimization potential: A novel perspective to address trade-off challenges in urban energy system planning," Applied Energy, Elsevier, vol. 304(C).
    2. Zirui Zhan & Jeremy Cenci & Jiazhen Zhang, 2022. "Frontier of Rural Revitalization in China: A Spatial Analysis of National Rural Tourist Towns," Land, MDPI, vol. 11(6), pages 1-21, May.
    3. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    4. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).
    5. Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
    6. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb," Energy, Elsevier, vol. 155(C), pages 824-837.
    7. Østergaard, Poul Alberg & Andersen, Anders N., 2023. "Optimal heat storage in district energy plants with heat pumps and electrolysers," Energy, Elsevier, vol. 275(C).
    8. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    9. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    10. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    12. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    13. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    14. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.
    15. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    16. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    17. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    18. Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).
    19. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    20. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.