IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v107y2019icp497-506.html
   My bibliography  Save this article

Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications

Author

Listed:
  • Moioli, Emanuele
  • Mutschler, Robin
  • Züttel, Andreas

Abstract

This study analyses the power to methane - and to methanol processes in the view of their efficiency in energy storage. A systematic investigation of the differences on the two production systems is performed. The energy storage potential of CO2 to methanol and methane is assessed in a progressive way, from the ideal case to the actual simulated process. In ideal conditions, where no additional energy is required for the reaction and CO2 is fully converted into products, energy storage is 8% more efficient in methanol than methane. However, the Sabatier reaction can be performed with a lower degree of complexity compared to the CO2 to methanol reaction. For this reason, the methanol production process is analysed in detail. The influence of the process configuration and the energy requirements for the various necessary unit operations is investigated, and an efficiency ranking among the various alternatives is obtained. Single stage, recycle and cascade reactors are compared and assessed in terms of energy requirements for the operation and energy storage in the product. For small scale applications, the cascade reactor is the most suitable process technology, because it does not require additional energy and allows high yield to methanol. With the current technology, we demonstrate that a hybrid process, including both the CO2 hydrogenation to methanol and methane, is the most effective method to achieve a high conversion of renewable energy to carbon-based fuels with a significant fraction of liquid product.

Suggested Citation

  • Moioli, Emanuele & Mutschler, Robin & Züttel, Andreas, 2019. "Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 497-506.
  • Handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:497-506
    DOI: 10.1016/j.rser.2019.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119301613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    2. Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    3. Guney, Mukrimin Sevket & Tepe, Yalcin, 2017. "Classification and assessment of energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1187-1197.
    4. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Dongseong & Byun, Jaewon & Han, Jee-hoon, 2023. "Environmental impact analysis of steelmaking off-gases on methanol production," Energy, Elsevier, vol. 277(C).
    2. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    3. Wang, Ligang & Chen, Ming & Küngas, Rainer & Lin, Tzu-En & Diethelm, Stefan & Maréchal, François & Van herle, Jan, 2019. "Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 174-187.
    4. Stefan Cristian Galusnyak & Letitia Petrescu & Dora Andreea Chisalita & Calin-Cristian Cormos & Marco Ugolini, 2023. "From Secondary Biomass to Bio-Methanol through CONVERGE Technology: An Environmental Analysis," Energies, MDPI, vol. 16(6), pages 1-18, March.
    5. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Huang, Renxing & Kang, Lixia & Liu, Yongzhong, 2022. "Renewable synthetic methanol system design based on modular production lines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    2. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    3. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    5. Diego Rodríguez Rodríguez, 2019. "Los costes de la transición: las centrales de bombeo y el gas en sistemas aislados," Studies on the Spanish Economy eee2019-13, FEDEA.
    6. Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
    7. Candra Saigustia & Sylwester Robak, 2021. "Review of Potential Energy Storage in Abandoned Mines in Poland," Energies, MDPI, vol. 14(19), pages 1-16, October.
    8. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    11. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
    12. Culcasi, Andrea & Gurreri, Luigi & Zaffora, Andrea & Cosenza, Alessandro & Tamburini, Alessandro & Micale, Giorgio, 2020. "On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients," Applied Energy, Elsevier, vol. 277(C).
    13. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    15. Renda, Simona & Ricca, Antonio & Palma, Vincenzo, 2020. "Precursor salts influence in Ruthenium catalysts for CO2 hydrogenation to methane," Applied Energy, Elsevier, vol. 279(C).
    16. Katla, Daria & Węcel, Daniel & Jurczyk, Michał & Skorek-Osikowska, Anna, 2023. "Preliminary experimental study of a methanation reactor for conversion of H2 and CO2 into synthetic natural gas (SNG)," Energy, Elsevier, vol. 263(PD).
    17. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    18. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    19. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.
    20. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Khiadani, Mehdi & Das, Choton K., 2019. "An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses," Applied Energy, Elsevier, vol. 247(C), pages 228-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:497-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.