IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v101y2019icp559-567.html
   My bibliography  Save this article

Analysis of biodegradable waste use for energy generation in Lithuania

Author

Listed:
  • Katinas, Vladislovas
  • Marčiukaitis, Mantas
  • Perednis, Eugenijus
  • Dzenajavičienė, Eugenija Farida

Abstract

The study presents possibilities to use biodegradable waste, formed in the farms and agro industry, sewage sludge and waste from food plants and trade, for energy generation. Farms were evaluated by relative size and volumes of produced biodegradable waste as well as by type. Also, the waste volumes, efficiency of biogas generation technologies processing various biodegradable organic waste and their mixes were investigated. Farms and agro industry companies gain environmental and economic benefit while implementing the described technologies. It was defined that organic waste from small livestock farms are dissipated sources of pollution. It is technically difficult to assess their impact on the environment, especially its liquid fraction, thus more attention and means should be paid for reduction of this impact. Therefore, the paper also investigates trends defined in Lithuania's agriculture strategy with regard to increase feasibility of farms. The evolution of the Lithuanian energy sector trends and the use of renewable energy sources for energy production growth are given. The development of the biogas production is analysed using the different sources of biodegradable waste. It is found that in Lithuania last year, production of biogas from biodegradable waste show strong growth from 2 thousand tonnes oil equivalent (ktoe) in 2006 to 32.1 ktoe in 2016.

Suggested Citation

  • Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
  • Handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:559-567
    DOI: 10.1016/j.rser.2018.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118307755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    2. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    3. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Kiriamiti, Henry & van Langenhove, Herman, 2010. "Biowaste energy potential in Kenya," Renewable Energy, Elsevier, vol. 35(12), pages 2698-2704.
    4. Lacour, S. & Chinese, T. & Alkadee, D. & Perilhon, C. & Descombes, G., 2012. "Energy and environmental balance of biogas for dual-fuel mobile applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1745-1753.
    5. Cvetković, Slobodan & Kaluđerović Radoičić, Tatjana & Vukadinović, Bojana & Kijevčanin, Mirjana, 2014. "Potentials and status of biogas as energy source in the Republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 407-416.
    6. Moreda, Iván López, 2016. "The potential of biogas production in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1580-1591.
    7. Igliński, Bartłomiej & Buczkowski, Roman & Cichosz, Marcin, 2015. "Biogas production in Poland—Current state, potential and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 686-695.
    8. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    9. Parawira, W & Murto, M & Zvauya, R & Mattiasson, B, 2004. "Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves," Renewable Energy, Elsevier, vol. 29(11), pages 1811-1823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tabakaev, Roman & Ibraeva, Kanipa & Kan, Victor & Dubinin, Yury & Rudmin, Maksim & Yazykov, Nikolay & Zavorin, Alexander, 2020. "The effect of co-combustion of waste from flour milling and highly mineralized peat on sintering of the ash residue," Energy, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zareei, Samira, 2018. "Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran," Renewable Energy, Elsevier, vol. 118(C), pages 351-356.
    2. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    3. Havukainen, J. & Uusitalo, V. & Niskanen, A. & Kapustina, V. & Horttanainen, M., 2014. "Evaluation of methods for estimating energy performance of biogas production," Renewable Energy, Elsevier, vol. 66(C), pages 232-240.
    4. Moreda, Iván López, 2016. "The potential of biogas production in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1580-1591.
    5. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    6. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    7. Park, Ho Young & Han, Karam & Kim, Hyun Hee & Park, Sangbin & Jang, Jihoon & Yu, Geun Sil & Ko, Ji Ho, 2020. "Comparisons of combustion characteristics between bioliquid and heavy fuel oil combustion in a 0.7 MWth pilot furnace and a 75 MWe utility boiler," Energy, Elsevier, vol. 192(C).
    8. Ekwenna, Emeka Boniface & Wang, Yaodong & Roskilly, Anthony, 2023. "Bioenergy production from pretreated rice straw in Nigeria: An analysis of novel three-stage anaerobic digestion for hydrogen and methane co-generation," Applied Energy, Elsevier, vol. 348(C).
    9. Hakawati, Rawan & Smyth, Beatrice M. & McCullough, Geoffrey & De Rosa, Fabio & Rooney, David, 2017. "What is the most energy efficient route for biogas utilization: Heat, electricity or transport?," Applied Energy, Elsevier, vol. 206(C), pages 1076-1087.
    10. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Montorsi, L. & Milani, M. & Venturelli, M., 2018. "Economic assessment of an integrated waste to energy system for an urban sewage treatment plant: A numerical approach," Energy, Elsevier, vol. 158(C), pages 105-110.
    12. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    14. Emma Lindkvist & Maria T. Johansson & Jakob Rosenqvist, 2017. "Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants," Energies, MDPI, vol. 10(11), pages 1-20, November.
    15. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    16. Şenol, Halil & Ali Dereli̇, Mehmet & Özbilgin, Ferdi, 2021. "Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Li, Huan & Jin, Chang & Zhang, Zhanying & O'Hara, Ian & Mundree, Sagadevan, 2017. "Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways," Energy, Elsevier, vol. 126(C), pages 649-657.
    18. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Tuigong, David & Kiriamiti, Henry & van Langenhove, Herman, 2012. "Multi criteria sustainability assessment of biogas production in Kenya," Applied Energy, Elsevier, vol. 93(C), pages 496-506.
    19. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    20. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:559-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.