IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp205-215.html

Optimization of various pretreatments condition of kenaf core (Hibiscus cannabinus) fibre for sugar production: Effect of chemical compositions of pretreated fibre on enzymatic hydrolysability

Author

Listed:
  • Tye, Ying Ying
  • Lee, Keat Teong
  • Wan Abdullah, Wan Nadiah
  • Leh, Cheu Peng

Abstract

In this work, the effects of various pretreatments’ parameters on kenaf core fibre were analyzed statistically and optimized using Response Surface Methodology based on the total glucose yield. The chemical compositions of the pretreated fibres were examined to discuss the effect of pretreatment on the fibre hydrolysability comprehensively. The results showed that estimation model for each pretreatment of kenaf core fibre were polynomial equations. The optimum conditions for water, acid and alkali pretreatments were 170 °C for 45 min, 120 °C for 90 min in 2.0% H2SO4 solution and 140 °C for 60 min in 3.0% NaOH solution, respectively. Among the three pretreatments, water pretreatment achieved the highest total glucose yield (25.5%), followed by acid (20.0%) and alkali (18.2%) pretreatments. Based on chemical compositions analysis, both water and acid pretreatments were capable of eliminating almost 100% of hemicellulose with negligible removal of lignin while the alkali pretreatment removed both the lignin and hemicellulose more than 60%. This result revealed that the removal of hemicellulose showed greater influential in enhancing the enzymatic accessibility and hence, hydrolysability of kenaf core fibre.

Suggested Citation

  • Tye, Ying Ying & Lee, Keat Teong & Wan Abdullah, Wan Nadiah & Leh, Cheu Peng, 2016. "Optimization of various pretreatments condition of kenaf core (Hibiscus cannabinus) fibre for sugar production: Effect of chemical compositions of pretreated fibre on enzymatic hydrolysability," Renewable Energy, Elsevier, vol. 99(C), pages 205-215.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:205-215
    DOI: 10.1016/j.renene.2016.06.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630564X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.06.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz, Héctor A. & Rodríguez-Jasso, Rosa M. & Fernandes, Bruno D. & Vicente, António A. & Teixeira, José A., 2013. "Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 35-51.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tye, Ying Ying & Leh, Cheu Peng & Wan Abdullah, Wan Nadiah, 2017. "Total glucose yield as the single response in optimizing pretreatments for Elaeis guineensis fibre enzymatic hydrolysis and its relationship with chemical composition of fibre," Renewable Energy, Elsevier, vol. 114(PB), pages 383-393.
    2. Duangporn Premjet & Suwanan Wongleang & Siripong Premjet, 2022. "Enhancing Glucose Recovery from Hibiscus cannabinus L. through Phosphoric Acid Pretreatment," Energies, MDPI, vol. 15(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoodi, S.R. & Mayer, M. & Besser, R.S., 2021. "Rapid and simple assembly of a thin microfluidic fuel cell stack by gas-assisted thermal bonding," Applied Energy, Elsevier, vol. 295(C).
    2. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    3. K. Venkata Rao & P. B. G. S. N. Murthy, 2018. "Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1533-1543, October.
    4. Hanna Pińkowska & Małgorzata Krzywonos & Paweł Wolak & Przemysław Seruga & Agata Górniak & Adrianna Złocińska & Michał Ptak, 2020. "Sustainable Production of 5-Hydroxymethylfurfural from Pectin-Free Sugar Beet Pulp in a Simple Aqueous Phase System-Optimization with Doehlert Design," Energies, MDPI, vol. 13(21), pages 1-15, October.
    5. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    7. Yu, Xunzhao & Zhu, Ling & Wang, Yan & Filev, Dimitar & Yao, Xin, 2022. "Internal combustion engine calibration using optimization algorithms," Applied Energy, Elsevier, vol. 305(C).
    8. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    9. Damir Sostaric & Gyula Mester & Sanja Dorner, 2019. "Mobile ECG and SPO2 Chest Pain Subjective Indicators of Patient with GPS Location in Smart Cities," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(3-B), pages 629-639.
    10. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    11. Ma, Jiao & Feng, Shuo & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2022. "Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 239(PD).
    12. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    13. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    14. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    15. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Dugaria, Simone & Bortolato, Matteo & Del Col, Davide, 2018. "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renewable Energy, Elsevier, vol. 128(PB), pages 495-508.
    17. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    18. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    19. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    20. Peng Yang & Ting Zhang & Yuheng Zhang & Sophie Wang & Yingwen Liu, 2020. "Model of R134a Liquid–Vapor Two-Phase Heat Transfer Coefficient for Pulsating Flow Boiling in an Evaporator Using Response Surface Methodology," Energies, MDPI, vol. 13(14), pages 1-19, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:205-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.