IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v94y2016icp175-185.html
   My bibliography  Save this article

Molten salt facilities, lessons learnt at pilot plant scale to guarantee commercial plants; heat losses evaluation and correction

Author

Listed:
  • Prieto, Cristina
  • Osuna, Rafael
  • Fernández, A. Inés
  • Cabeza, Luisa F.

Abstract

This paper presents the importance of the thermal losses in the performance evaluation of thermal storage systems. In order to reinforce this statement, an evaluation of a pilot plant whose size is sufficiently representative for the extrapolation of results at larger scales has been carried out. The evaluation of the heat losses of a molten salt pilot plant with 8.1 MWhth built in Spain by Abengoa is presented. While the storage materials development has attracted a lot of attention from the researchers, the performance of a two-tank storage system has not been evaluated in detail. The relevance of the design of conventional systems such as insulation, mechanical assembly or foundation, are found to be the key for the feasibility of a TES system. Different performance scenarios were performed and based on experimental results, decisions for reengineering of the pilot plant could be taken to improve commercial storage plants.

Suggested Citation

  • Prieto, Cristina & Osuna, Rafael & Fernández, A. Inés & Cabeza, Luisa F., 2016. "Molten salt facilities, lessons learnt at pilot plant scale to guarantee commercial plants; heat losses evaluation and correction," Renewable Energy, Elsevier, vol. 94(C), pages 175-185.
  • Handle: RePEc:eee:renene:v:94:y:2016:i:c:p:175-185
    DOI: 10.1016/j.renene.2016.03.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116302233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    2. Prieto, Cristina & Osuna, Rafael & Fernández, A. Inés & Cabeza, Luisa F., 2016. "Thermal storage in a MW scale. Molten salt solar thermal pilot facility: Plant description and commissioning experiences," Renewable Energy, Elsevier, vol. 99(C), pages 852-866.
    3. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Zsembinszki & Boniface Dominick Mselle & David Vérez & Emiliano Borri & Andreas Strehlow & Birgo Nitsch & Andrea Frazzica & Valeria Palomba & Luisa F. Cabeza, 2021. "A New Methodological Approach for the Evaluation of Scaling Up a Latent Storage Module for Integration in Heat Pumps," Energies, MDPI, vol. 14(22), pages 1-17, November.
    2. González-Portillo, Luis F. & Muñoz-Antón, Javier & Martínez-Val, José M., 2017. "An analytical optimization of thermal energy storage for electricity cost reduction in solar thermal electric plants," Applied Energy, Elsevier, vol. 185(P1), pages 531-546.
    3. Li, Zhao & Li, Baorang & Du, Xiaoze & Wu, Hongwei, 2020. "Experimental investigation on stability of thermal performances of solar salt based nanocomposite," Renewable Energy, Elsevier, vol. 146(C), pages 816-827.
    4. Cristina Prieto & Sonia Fereres & Luisa F. Cabeza, 2020. "The Role of Innovation in Industry Product Deployment: Developing Thermal Energy Storage for Concentrated Solar Power," Energies, MDPI, vol. 13(11), pages 1-19, June.
    5. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2017. "Influence of the heat transfer fluid in a CSP plant molten salts charging process," Renewable Energy, Elsevier, vol. 113(C), pages 148-158.
    6. del Valle-Zermeño, Ricardo & Barreneche, Camila & Cabeza, Luisa F. & Formosa, Joan & Fernández, A. Inés & Chimenos, Josep M., 2016. "MSWI bottom ash for thermal energy storage: An innovative and sustainable approach for its reutilization," Renewable Energy, Elsevier, vol. 99(C), pages 431-436.
    7. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2016. "Experimental analysis of charging and discharging processes, with parallel and counter flow arrangements, in a molten salts high temperature pilot plant scale setup," Applied Energy, Elsevier, vol. 178(C), pages 394-403.
    8. Peiró, Gerard & Prieto, Cristina & Gasia, Jaume & Jové, Aleix & Miró, Laia & Cabeza, Luisa F., 2018. "Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation," Renewable Energy, Elsevier, vol. 121(C), pages 236-248.
    9. Imponenti, Luca & Albrecht, Kevin J. & Kharait, Rounak & Sanders, Michael D. & Jackson, Gregory S., 2018. "Redox cycles with doped calcium manganites for thermochemical energy storage to 1000 °C," Applied Energy, Elsevier, vol. 230(C), pages 1-18.
    10. Prieto, Cristina & Fereres, Sonia & Ruiz-Cabañas, Francisco Javier & Rodriguez-Sanchez, Alfonso & Montero, Cristina, 2020. "Carbonate molten salt solar thermal pilot facility: Plant design, commissioning and operation up to 700 °C," Renewable Energy, Elsevier, vol. 151(C), pages 528-541.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    2. Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).
    3. Bruch, A. & Molina, S. & Esence, T. & Fourmigué, J.F. & Couturier, R., 2017. "Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system," Renewable Energy, Elsevier, vol. 103(C), pages 277-285.
    4. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.
    5. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    6. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    7. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    8. Miró, Laia & Oró, Eduard & Boer, Dieter & Cabeza, Luisa F., 2015. "Embodied energy in thermal energy storage (TES) systems for high temperature applications," Applied Energy, Elsevier, vol. 137(C), pages 793-799.
    9. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    10. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    11. Fazlollahi, Samira & Schüler, Nils & Maréchal, François, 2015. "A solid thermal storage model for the optimization of buildings operation strategy," Energy, Elsevier, vol. 88(C), pages 209-222.
    12. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    13. Fernández, Ángel G. & Gomez-Vidal, Judith C., 2017. "Thermophysical properties of low cost lithium nitrate salts produced in northern Chile for thermal energy storage," Renewable Energy, Elsevier, vol. 101(C), pages 120-125.
    14. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    15. Navarro, Lidia & de Gracia, Alvaro & Colclough, Shane & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems," Renewable Energy, Elsevier, vol. 88(C), pages 526-547.
    16. Nomura, Takahiro & Zhu, Chunyu & Nan, Sheng & Tabuchi, Kazuki & Wang, Shuangfeng & Akiyama, Tomohiro, 2016. "High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network," Applied Energy, Elsevier, vol. 179(C), pages 1-6.
    17. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    18. Odenthal, Christian & Steinmann, Wolf-Dieter & Zunft, Stefan, 2020. "Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications – Part II: Numerical investigation," Applied Energy, Elsevier, vol. 263(C).
    19. Zhao, Weihuan & France, David M. & Yu, Wenhua & Kim, Taeil & Singh, Dileep, 2014. "Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants," Renewable Energy, Elsevier, vol. 69(C), pages 134-146.
    20. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:94:y:2016:i:c:p:175-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.