IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip1p203-211.html
   My bibliography  Save this article

Short-term wind speed and power forecasting using an ensemble of mixture density neural networks

Author

Listed:
  • Men, Zhongxian
  • Yee, Eugene
  • Lien, Fue-Sang
  • Wen, Deyong
  • Chen, Yongsheng

Abstract

An ensemble of mixture density neural networks is used for short-term wind speed and power forecasting. Predicted wind speeds obtained from a numerical weather prediction model are used as the input data for the mixture density network, whose outputs are the mixture density parameters (used to represent the probability density function of the uncertain output or target variable). All mixture density neural networks in an ensemble are assumed to have a three-layer architecture, with each architecture having different numbers of nodes in the hidden layer. Because a mixture of Gaussian distributions is used to approximate the conditional distribution of the target random variable (either wind speed or wind turbine power), the uncertainties arising from both the model structure and model output can be completely quantified. In consequence, rigorous confidence intervals reflecting these sources of uncertainty in the prediction can be obtained and used to assess the performance for the wind speed and wind turbine power forecasting. An application of the proposed approach to a data set of the measured wind speed and power from an operational wind turbine in a wind farm in Taiwan is used to test the methodology. The results of this application demonstrate that the proposed methodology works well for the multi-step ahead wind speed and power forecasting.

Suggested Citation

  • Men, Zhongxian & Yee, Eugene & Lien, Fue-Sang & Wen, Deyong & Chen, Yongsheng, 2016. "Short-term wind speed and power forecasting using an ensemble of mixture density neural networks," Renewable Energy, Elsevier, vol. 87(P1), pages 203-211.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:203-211
    DOI: 10.1016/j.renene.2015.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gneiting, Tilmann & Larson, Kristin & Westrick, Kenneth & Genton, Marc G. & Aldrich, Eric, 2006. "Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching SpaceTime Method," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 968-979, September.
    2. Roulston, M.S. & Kaplan, D.T. & Hardenberg, J. & Smith, L.A., 2003. "Using medium-range weather forcasts to improve the value of wind energy production," Renewable Energy, Elsevier, vol. 28(4), pages 585-602.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    5. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
    2. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    3. Tomás Marinozzi, 2023. "Forecasting Inflation in Argentina: A Probabilistic Approach," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(81), pages 81-110, May.
    4. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    5. Patrick Marsh, 2019. "Nonparametric conditional density specification testing and quantile estimation; with application to S&P500 returns," Discussion Papers 19/02, University of Nottingham, Granger Centre for Time Series Econometrics.
    6. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    7. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    8. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    9. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    10. Steven Y. K. Wong & Jennifer S. K. Chan & Lamiae Azizi, 2024. "Quantifying neural network uncertainty under volatility clustering," Papers 2402.14476, arXiv.org, revised Sep 2024.
    11. C. Alexander & M. Coulon & Y. Han & X. Meng, 2024. "Evaluating the discrimination ability of proper multi-variate scoring rules," Annals of Operations Research, Springer, vol. 334(1), pages 857-883, March.
    12. Jie Cheng, 2023. "Modelling and forecasting risk dependence and portfolio VaR for cryptocurrencies," Empirical Economics, Springer, vol. 65(2), pages 899-924, August.
    13. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
    14. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).
    17. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    18. Jie Cheng, 2024. "Evaluating Density Forecasts Using Weighted Multivariate Scores in a Risk Management Context," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3617-3643, December.
    19. Yanlong Wang & Jian Xu & Shao-Lun Huang & Danny Dongning Sun & Xiao-Ping Zhang, 2025. "Assessing Uncertainty in Stock Returns: A Gaussian Mixture Distribution-Based Method," Papers 2503.06929, arXiv.org.
    20. Lauret, Philippe & Alonso-Suárez, Rodrigo & Amaro e Silva, Rodrigo & Boland, John & David, Mathieu & Herzberg, Wiebke & Le Gall La Salle, Josselin & Lorenz, Elke & Visser, Lennard & van Sark, Wilfried, 2024. "The added value of combining solar irradiance data and forecasts: A probabilistic benchmarking exercise," Renewable Energy, Elsevier, vol. 237(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:203-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.